Publication Cover
High Pressure Research
An International Journal
Volume 41, 2021 - Issue 2
1,816
Views
0
CrossRef citations to date
0
Altmetric
Articles

Reflective imaging, on-axis laser heating and radiospectrometry of samples in diamond anvil cells with a parabolic mirror

ORCID Icon, ORCID Icon, , , , , ORCID Icon, , , ORCID Icon, & show all
Pages 142-154 | Received 22 Jan 2021, Accepted 19 Apr 2021, Published online: 15 May 2021

References

  • Anzellini S, Boccato S. A practical review of the laser-heated diamond anvil cell for university laboratories and synchrotron applications. Crystals. 2020;10:459.
  • Mao H-K, Chen X-J, Ding Y, et al. Solids, liquids and gases under high pressure. Rev Mod Phys. 2018;90:015007.
  • Dorfman SM, Phase diagrams and thermodynamics of lower mantle materials. In: Terasaki H, Fischer RA, editors. Deep earth: physics and chemistry of the lower mantle and core. American Geophysical Union, Washington D. C.; 2016. p. 241–252.
  • Jeanloz R, Kavner A. Melting criteria and imaging spectroradiometry in laser-heated diamond-anvil cell experiments. Phil Trans R Soc London A. 1996;354:1279–1305.
  • Aprilis G, Strohm C, Kupenko I, et al. Portable double-sided pulsed laser heating system for time-resolved geoscience and materials science applications. Rev Sci Instrum. 2017;88:084501.
  • Fedotenko T, Dubrovinsky L, Aprilis G, et al. Laser heating setup for diamond anvil cells for in situ synchrotron and in house high and ultra-high pressure studies. Rev Sci Instrum. 2019;90:104501.
  • Ma Y, Mao H-k., Hemley RJ, et al. Two-dimensional energy dispersive x-ray diffraction at high pressures and temperatures. Rev Sci Instrum. 2001;72(2):1302.
  • Meng Y, Hrubiak R, Rod E, et al. New developments in laser-heated diamond anvil cell with in situ synchrotron x-ray diffraction at high pressure collaborative access team. Rev Sci Instrum. 2015;86:072201.
  • Prakapenka VB, Kubo A, Kuznetsov A, et al. Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium. High Press Res. 2008;28(3):225–235.
  • Smith D, Smith JS, Childs C, et al. A CO2 laser heating system for in situ high pressure-temperature experiments at HPCAT. Rev Sci Instrum. 2018;89:083901.
  • Kupenko I, Dubrovinsky L, Dubrovinskaia N, et al. Portable double-sided laser-heating system for Mössbauer spectroscopy and X-ray diffraction experiments at synchrotron facilities with diamond anvil cells. Rev Sci Instrum. 2012;83:124501.
  • Spiekermann G, Kupenko I, Petitgirard S, et al. A portable on-axis laser heating system for near-90 X-ray spectroscopy: application to ferropericlase and iron silicide. J Synchrotron Radiat. 2020;27(2):414–424.
  • Deng J, Du Z, Benedetti LR, et al. The influence of wavelength-dependent absorption and temperature gradients on temperature determination in laser-heated diamond-anvil cells. J Appl Phys. 2017;121:025901.
  • Benedetti LR, Loubeyre P. Temperature gradients, wavelength-dependent emissivity, and accuracy of high and very-high temperatures measured in the laser-heated diamond cell. High Press Res. 2004;24(4):423–445.
  • Childs C, OĎonnell W, Ellison P, et al. Optical and electronic solutions for power stabilization of CO2 lasers. Rev Sci Instrum. 2020;91(10):103003.
  • Dewaele A, Eggert JH, Loubeyre P, et al. Measurement of refractive index and equation of state in dense He, H2, H2O, and Ne under high pressure in a diamond anvil cell. Phys Rev A. 2003;67:094112.
  • Walter MJ, Koga KT. The effects of chromatic dispersion on temperature measurement on the laser-heated diamond anvil cell. Phys Earth Planet Int. 2004;143–144:541–558.
  • Benedetti LR, Guignot N, Farber DL. Achieving accuracy in spectroradiometric measurements of temperature in the laser-heated diamond anvil cell: diamond is an optical component. J Appl Phys. 2007;101(1):013109.
  • Giampaoli R, Kantor I, Mezouar M, et al. Measurement of temperature in the laser heated diamond anvil cell: comparison between reflective and refractive optics. High Press Res. 2018;38(3):250–269.
  • Mezouar M, Giampaoli R, Garbarino G, et al. Methodology for in situ synchrotron X-ray studies in the laser-heated diamond anvil cell. High Press Res. 2017;37(2):170–180.
  • Petitgirard S, Salamat A, Beck P, et al. Strategies for in situ laser heating in the diamond anvil cell at an X-ray diffraction beamline. J Synchrotron Radiat. 2014;21:89–96.
  • Morard G, Boccato S, Rosa AD, et al. Solving controversies on the iron phase diagram under high pressure. Geophys Res Lett. 2018;45:11074–11082.
  • Laskin A, Basics of optics on imaging quality and aberrations. In: Handbook of laser micro- and nano-engineering. Springer, Cham, Switzerland; 2021.
  • Boehler R, Chopelas A. A new approach to laser heating in high pressure mineral physics. Geophys Res Lett. 1991;18(6):1147–1150.
  • Kantor I, Marini C, Mathon O, et al. A laser heating facility for energy-dispersive X-ray absorption spectroscopy. Rev Sci Instrum. 2018;89:013111.
  • Lord OT, Walter MJ, Dasgupta R, et al. Melting in the Fe-C system to 70 GPa. Earth Planet Sci Lett. 2009;284:157–167.
  • Watanuki T, Shimomura O, Yagi T, et al. Construction of laser-heated anvil cell system for in situ x-ray diffraction study at SPpring-8. Rev Sci Instrum. 2001;72(2):1289–1292.
  • Malone RM, Becker SMA, Dolan DH, et al. Design of a thermal imaging diagnostic using 90-degree off-axis parabolic mirrors. SPIE Optics + Photonics, San Diego, USA; 2006.
  • Holdworth JL, Sharafutdinova G, Sanderson MJ, et al. Off-axis parabolic optical relays: almost perfect imaging. Proc SPIE. 2011;8011:80112C.
  • Sharafutdinova G, Holdsworth J, van Helden D. Improved field scanner incorporating parabolic optics. Part 2: experimental verification and potential for volume scanning. Appl Opt. 2010;49(29):5517–5527.
  • Howard JE. Imaging properties of off-axis parabolic mirrors. Appl Opt. 1979;18(15):2714–2722.
  • Liu X, Lu Z, Wang X, et al. Study on the focusing characteristics of off-axis parabolic mirror focusing system. 2011 Academic International Symposium on Optoelectronics and Microelectronics Technology; 2011. p. 116–119.
  • Lobanov SS, Speziale S. Radiometric temperature measurements in non-gray ferropericlase with pressure- spin- and temperature dependent optical properties. J Geophys Res. 2019;124:12825–12836.
  • Drewitt JWE, Walter MJ, Zhang H, et al. The fate of carbonate in oceanic crust subducted into earth's lower mantle. Earth Planet Sci Lett. 2019;511:213–222.
  • Kupenko I, Aprilis G, Vasiukov DM, et al. Magnetism in cold subduction slabs at mantle transition zone depths. Nature. 2019;570:102–106.
  • Kupenko I, Strohm C, McCammon C, et al. Time differentiated nuclear resonance spectroscopy coupled with pulsed laser heating in diamond anvil cells. Rev Sci Instrum. 2015;86:114501.
  • Mao HK, Xu J, Struzhkin VV, et al. Phonon density of states of iron up to 153 Gigapascals. Science. 2001;292:914–916.