Publication Cover
High Pressure Research
An International Journal
Volume 41, 2021 - Issue 2
280
Views
0
CrossRef citations to date
0
Altmetric
Articles

Nonstoichiometric Fe–V–Al full Heusler alloys under high pressure: thermoelectric properties

ORCID Icon, , , &
Pages 184-197 | Received 19 Jun 2020, Accepted 28 Apr 2021, Published online: 15 May 2021

References

  • Elphick K, Frost W, Samiepour M, et al. Heusler alloys for spintronic devices: review on recent development and future perspectives. Sci Technol Adv Mater. 2021;22(1):235–271.
  • Graf T, Casper F, Winterlik J, et al. Crystal structure of new Heusler compounds. Z Anorg Allg Chem. 2009;635:976–981.
  • Mikami M, Kinemuchi Y, Ozaki K, et al. Thermoelectric properties of tungsten-substituted Heusler Fe2VAl alloy. J Appl Phys. 2012;111:093710.
  • Maksimov I, Baabe D, Klauss HH, et al. Structure and magnetic order in Fe2+xV1-xAl. J Phys Condens Matter. 2001;13:5487–5501.
  • Kudo K, Yamada S, Chikada J, et al. Effect of Fe-V nonstoichiometry on electrical and thermoelectric properties of Fe2VAl films. Jpn J Appl Phys. 2018;57:040306.
  • Nishino Y, Kato M, Asano S, et al. Semiconductorlike behavior of electrical resistivity in Heusler-type Fe2VAl Compound. Phys Rev Lett. 1997;79(10):1909–1912.
  • Okamura H, Kawahara J, Nanba T, et al. Pseudogap formation in the intermetallic compounds (Fe1-xVx)3Al. Phys Rev Lett. 2000;84(16):3674–3677.
  • Soda K, Murayama H, Shimba K, et al. High-resolution soft x-ray photoelectron study of density of states and thermoelectric properties of the Heusler-type alloys (Fe2/3V1/3)100-yAl. Phys Rev B. 2005;71:245112.
  • Nishino Y. Development of thermoelectric materials based on Fe2VAl Heusler compound for energy harvesting applications. IOP Conf Ser Mater Sci Eng. 2011;18:142001.
  • Liu C, Morelli DT. Low-temperature thermoelectric properties of Fe2VAl with partial cobalt doping. J Electron Mater. 2012;41:1632–1635.
  • Nishino Y, Kamizono S, Miyazaki H, et al. Effects of off-stoichiometry and Ti doping on thermoelectric performance of Fe2VAl Heusler compound. AIP Adv. 2019;9:125003.
  • Renard K, Mori A, Yamada Y, et al. Thermoelectric properties of the Heusler-type Fe2VTaxAl1-x alloys. J Appl Phys. 2014;115:033707.
  • Hinterleitner B, Knapp I, Poneder M, et al. Thermoelectric performance of a metastable thin-film Heusler alloy. Nature. 2019;576:85–90.
  • Masuda S, Tsuchiya K, Qiang J, et al. Effect of high-pressure torsion on the microstructure and thermoelectric properties of Fe2VAl-based compounds. J Appl Phys. 2018;124:035106.
  • Nishino Y, Kato H, Kato M, et al. Effect of off-stoichiometry on the transport properties of the Heusler-type Fe2VAl compound. Phys Rev B. 2001;63:233303.
  • Lue CS, Kuo Y-K. Thermoelectric properties of the semimetallic Heusler compounds Fe2-xV1+xM (M = Al. Ga). Phys Rev B. 2002;66:085121.
  • Hanada Y, Suzuki RO, Ono K. Seebeck coefficient of (Fe,V)3Al alloys. J Alloys Compd. 2001;329:63–68.
  • Nakama T, Takaesu Y, Yagasaki K, et al. Transport properties of Heusler compounds Fe3-xVxAl. J Phys Soc Japan. 2005;74(5):1378–1381.
  • Tsujii N, Nishide A, Hayakawa J, et al. Observation of enhanced thermopower due to spin fluctuation in weak itinerant ferromagnet. Sci Adv. 2019;5:eaat5935.
  • Morozova NV, Korobeinikov IV, Ovsyannikov SV. Strategies and challenges of high-pressure methods applied to thermoelectric materials. J Appl Phys. 2019;125:220901.
  • Xu B, Li X, Yu G, et al. The structural, elastic and thermoelectric properties of Fe2VAl at pressures. J Alloys Compd. 2013;565:22–28.
  • Lonchakov AT, Marchenkov VV, Okulov VI, et al. Revealing the low-temperature effect of strengthening the magnetism of iron-vanadium-aluminum alloy upon small variation of the non-transition element content in the stoichiometric composition. Low Temp Phys. 2016;42:230–231.
  • Korobeinikov IV, Morozova NV, Lukyanova LN, et al. Stress-controlled thermoelectric module for energy harvesting and its application for the significant enhancement of the power factor of Bi2Te3-based thermoelectrics. J Phys D Appl Phys. 2018;51:025501.
  • Shchennikov VV, Ovsyannikov SV, Manakov AY. Measurement of Seebeck effect (thermoelectric power) at high pressure up to 40 GPa. J Phys Chem Solids. 2010;71:1168–1174.
  • Takamura Y, Nakane R, Sugahara S. Quantitative analysis of atomic disorders in full-Heusler Co2FeSi alloy thin films using X-ray diffraction with Co Kα and Cu Kα sources. J Appl Phys. 2010;107:09B111.
  • Takamura Y, Nakane R, Sugahara S. Analysis of L21-ordering in full-Heusler Co2FeSi alloy thin films formed by rapid thermal annealing. J Appl Phys. 2009;105:07B109.
  • Kostenko GG, Lukoyanov VV. Structural disorder and short-range order in full Heusler alloys Fe2VAl and Co2CrAl from first principles calculations. Mater Chem Phys. 2020;239:122100.
  • Matsushita A, Yamada Y. Physical properties of Heusler-type Fe2VAl compound. J Magn Magn Mater. 1999;196–197:669–670.
  • Govorkova TE, Lonchakov AT, Marchenkov VV, et al. The detection of a strong influence of composition variations on low-temperature magnetic ordering in nearly stoichiometric Fe–V–Al alloys. Tech Phys Lett. 2016;42(11):1122–1125.
  • Usik AY, Okulov VI, Govorkova TE, et al. Efects of changing the ratio of transition elements in the kinetic properties of Fe-V-Al alloys. Int J Appl Fundam Res. 2019;4:67–71.
  • Klotz S, Le Godec Y, Strässle T, et al. The α-γ-ϵ triple point of iron investigated by high pressure-high temperature neutron scattering. Appl Phys Lett. 2008;93:091904.
  • Morozova NV, Shchennikov VV, Ovsyannikov SV. Features and regularities in behavior of thermoelectric properties of rare-earth, transition, and other metals under high pressure up to 20 GPa. J Appl Phys. 2015;118:225901.
  • Blatt FJ, Schroeder PA, Foiles CL, et al. Thermoelectric power of metals. New York (NY): Plenum Press; 1976.
  • Soda K, Harada S, Kato M, et al. Origin of large thermoelectric power in off-stoichiometric Fe2VAl-based alloys. IOP Conf Ser Mater Sci Eng. 2011;18:142004.
  • Sandaiji Y, Ide N, Nishino Y, et al. Off-stoichiometric effects on thermoelectric properties of Fe2VAl-based compounds. J Japan Soc Powder Powder Metall. 2010;57(4):207–212.
  • Okulov VI, Arkhipov VE, Govorkova TE, et al. Experimental validation of the anomalies in the electron density of states in semiconductor iron-vanadium-aluminum alloys. Low Temp Phys. 2007;33:692–698.
  • Marchenkov VV, Okulov VI, Okulova KA, et al. Anomalies in the galvanomagnetic properties of Fe1.9V1.1Al pseudogap semiconductors at high magnetic fields. J Low Temp Phys. 2010;159:208–211.
  • Lonchakov AT, Marchenkov V V, Okulov VI, et al. Pseudogap state and strong scattering of current carriers by local spin moments as mechanisms for the semiconducting properties of near-stoichiometric iron-vanadium-aluminum alloys. Low Temp Phys. 2013;39(1):84–88.
  • Xiao H, Wang R, Xu L, et al. Pressure effect of magnetic and electronic properties of Mn2PtGa Heusler alloy. Phys Lett A. 2018;382(4):224–230.
  • Muhammad I, Zhang JM, Ali A, et al. Structural, mechanical, thermal, magnetic, and electronic properties of the RhMnSb half-Heusler alloy under pressure. Mater Chem Phys. 2020;251:123110.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.