Publication Cover
High Pressure Research
An International Journal
Volume 42, 2022 - Issue 1
167
Views
1
CrossRef citations to date
0
Altmetric
Articles

Measurement of shock and re-shock Hugoniot data of liquid nitrogen

ORCID Icon, ORCID Icon, , ORCID Icon &
Pages 57-68 | Received 30 Aug 2021, Accepted 06 Jan 2022, Published online: 04 Feb 2022

References

  • Tomasino D, Kim M, Smith J, et al. Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with colossal Raman intensity. Phys. Rev. Lett. 2014;113:205502.
  • Sant’Anna MM, Schlachter AS, Öhrwall G, et al. K-shell X-ray spectroscopy of atomic nitrogen. Phys. Rev. Lett. 2011;107:033001.
  • Pickard CJ, Needs RJ. High-pressure phases of nitrogen. Phys. Rev. Lett. 2009;102:125702.
  • Ma Y, Oganov AR, Li Z, et al. Novel high pressure structures of polymeric nitrogen. Phys. Rev. Lett. 2009;102:065501.
  • Jones HD, Zerilli FJ. Theoretical equation of state for aluminized nitromethane. J. Appl. Phys. 1991;69:3893–3900.
  • Driver KP, Militzer B. First-principles equation of state calculations of warm dense nitrogen. Phys. Rev. B. 2016;93:064101.
  • Erba A, Maschio L, Pisani C, et al. Pressure-induced transitions in solid nitrogen: role of dispersive interactions. Phys. Rev. B. 2011;84:012101.
  • Wang X, Tian F, Wang L, et al. Structural stability of polymeric nitrogen: a first-principles investigation. J. Chem. Phys. 2010;132:024502.
  • Donadio D, Spanu L, Duchemin I, et al. Ab initio investigation of the melting line of nitrogen at high pressure. Phys. Rev. B. 2010;82:020102.
  • Boates B, Bonev SA. First-order liquid-liquid phase transition in compressed nitrogen. Phys. Rev. Lett. 2009;102:015701.
  • Goncharov AF, Crowhurst JC, Struzhkin VV, et al. Triple point on the melting curve and polymorphism of nitrogen at high pressure. Phys. Rev. Lett. 2008;101:095502.
  • Zahariev F, Dudiy SV, Hooper J, et al. Systematic method to new phases of polymeric nitrogen under high pressure. Phys. Rev. Lett. 2006;97:155503.
  • Dick RD. Shock wave compression of benzene, carbon disulfide, carbon tetrachloride, and liquid nitrogen. J. Chem. Phys. 1970;52:6021–6032.
  • Nellis WJ, Mitchell AC. Shock compression of liquid argon, nitrogen, and oxygen to 90 GPa (900 kbar). J. Chem. Phys. 1980;73:6137–6145.
  • Nellis WJ, Holmes NC, Mitchell AC, et al. Phase transition in fluid nitrogen at high densities and temperatures. Phys. Rev. Lett. 1984;53:1661.
  • Nellis WJ, Radousky HB, Hamilton DC, et al. Equation-of-state, shock-temperature, and electrical-conductivity data of dense fluid nitrogen in the region of the dissociative phase transition. J. Chem. Phys. 1991;94:2244–2257.
  • Schott GL, Shaw MS, Johnson JD. Shocked states from initially liquid oxygen–nitrogen systems. J. Chem. Phys. 1985;82:4264–4275.
  • Radousky HB, Nellis WJ, Ross M, et al. Molecular dissociation and shock-induced cooling in fluid nitrogen at high densities and temperatures. Phys. Rev. Lett. 1986;57:2419.
  • Ross M, Rogers F. Polymerization, shock cooling, and the high-pressure phase diagram of nitrogen. Phys. Rev. B. 2006;74:024103.
  • Radousky HB, Ross M. Shock-induced cooling in high-density fluid nitrogen. Int. J. High Pressure Res. 1988;1:39–52.
  • Meng CM, Shi SC, Dong S, et al. Equation of state of dense liquid nitrogen in the region of the dissociative phase transition. Chin Phys Lett. 2002;19:252–254.
  • Fortov VE. Extreme states of matter on earth and in space. Phys Usp. 2009;52:615.
  • Trunin RF, Boriskov GV, Bykov AI, et al. Shock compression of liquid nitrogen at a pressure of 320 GPa. JETP Lett. 2008;88:189–191.
  • Mochalov MA, Zhernokletov MV, Il’kaev RI, et al. Measurement of density, temperature, and electrical conductivity of a shock-compressed nonideal nitrogen plasma in the megabar pressure range. J. Exp. Theor. Phys. 2010;110:67–80.
  • Weng J, Tan H, Wang X, et al. Optical-fiber interferometer for velocity measurements with picosecond resolution. Appl. Phys. Lett. 2006;89:111101.
  • Setchell RE. Refractive index of sapphire at 532 nm under shock compression and release. J. Appl. Phys. 2002;91:2833–2841.
  • Jones SC, Robinson MC, Gupta YM. Ordinary refractive index of sapphire in uniaxial tension and compression along the c axis. J. Appl. Phys. 2003;93:1023–1031.
  • Jones SC, Vaughan BA, Gupta YM. Refractive indices of sapphire under elastic, uniaxial strain compression along the a axis. J. Appl. Phys. 2001;90:4990–4996.
  • Jensen BJ, Holtkamp DB, Rigg PA, et al. Accuracy limits and window corrections for photon Doppler velocimetry. J. Appl. Phys. 2007;101:013523.
  • Cao X, Li J, Li J, et al. Refractive index of r-cut sapphire under shock pressure range 5 to 65 GPa. J. Appl. Phys. 2014;116:093516.
  • Li X, Yu Y, Li Y, et al. Window corrections of z-cut quartz at 1550 nm under elastic, uniaxial compression up to 10 GPa. J. Appl. Phys. 2011;109:103518.
  • Rigg PA, Knudson MD, Scharff RJ, et al. Determining the refractive index of shocked [100] lithium fluoride to the limit of transmissibility. J. Appl. Phys. 2014;116:033515.
  • Akram M S, Fan ZN, Zhang MJ, et al. Measuring the shock Hugoniot data of liquid nitrogen using a cryogenic system for shock compression. J. Appl. Phys. 2020;128:225901.
  • Wu X, Akram MS, Liu FS, et al. Simulation based study of magnetic velocity induction system by using analysis system electromagnetics suite. Rev. Sci. Instru. 2021;92:094708.
  • Zhou X, Li J, Nellis WJ, et al. Pressure-dependent Hugoniot elastic limit of Gd3Ga5O12 single crystals. J. Appl. Phys. 2011;109:083536.
  • Liu Q, Zhou X, Zeng X, et al. Sound velocity, equation of state, temperature and melting of LiF single crystals under shock compression. J. Appl. Phys. 2015;117:045901.
  • Celliers PM, Collins GW, Hicks DG, et al. Systematic uncertainties in shock-wave impedance-match analysis and the high-pressure equation of state of Al. J. Appl. Phys. 2005;98:113529.
  • Cao X, Wang Y, Li X, et al. Refractive index and phase transformation of sapphire under shock pressures up to 210 GPa. J. Appl. Phys. 2017;121:115903.
  • Mani P, Rallapalli A, Machavaram VR, et al. Monitoring phase changes in supercooled aqueous solutions using an optical fiber Fresnel reflection sensor. Opt Express. 2016;24:5395–5410.
  • Wilks J. The properties of liquid and solid helium. Clarendon (TX): Oxford University Press; 1967.
  • Ross M. Shock cooling of liquid nitrogen and superfluid helium. Intern. J. High Pressure Res. 1992;10:649–657.
  • Ross M. The dissociation of dense liquid nitrogen. J. Chem. Phys. 1987;86:7110–7118.
  • Mattson WD, Sanchez-Portal D, Chiesa S, et al. Prediction of new phases of nitrogen at high pressure from first-principles simulations. Phys. Rev. Lett. 2004;93:125501.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.