Publication Cover
High Pressure Research
An International Journal
Volume 42, 2022 - Issue 3
111
Views
1
CrossRef citations to date
0
Altmetric
Articles

The systems KCl–CaCO3 and KCl–MgCO3 at 6 GPa

, ORCID Icon, , & ORCID Icon
Pages 245-258 | Received 09 Apr 2022, Accepted 13 Jul 2022, Published online: 19 Jul 2022

References

  • Kamenetsky MB, Sobolev AV, Kamenetsky VS, et al. Kimberlite melts rich in alkali chlorides and carbonates: A potent metasomatic agent in the mantle. Geol. 2004;32:845–848.
  • Kamenetsky VS, Maas R, Kamenetsky MB, et al. Chlorine from the mantle: magmatic halides in the udachnaya-east kimberlite, siberia. Earth Planet Sci Lett 2009;285:96–104.
  • Asafov EV, Sobolev AV, Batanova VG, et al. Chlorine in the earth’s mantle as an indicator of the global recycling of oceanic crust. Russ Geol Geophys. 2020;61:937–950.
  • Hanyu T, Shimizu K, Ushikubo T, et al. Tiny droplets of ocean island basalts unveil earth’s deep chlorine cycle. Nat Commun. 2019;10:1–7.
  • Navon O, Hutcheon I, Rossman G, et al. Mantle-derived fluids in diamond micro-inclusions. Nature. 1988;335:784–789.
  • Izraeli ES, Harris JW, Navon O. Brine inclusions in diamonds: a new upper mantle fluid. Earth Planet Sci Lett 2001;187:323–332.
  • Jablon BM, Navon O. Most diamonds were created equal. Earth Planet Sci Lett 2016;443:41–47.
  • Zedgenizov DA, Ragozin AL, Shatsky VS, et al. Diamond formation during metasomatism of mantle eclogite by chloride-carbonate melt. Contrib Mineral Petrol. 2018;173(84).
  • Kaminsky FV, Wirth R, Schreiber A. Carbonatitic inclusions in deep mantle diamond from juina, Brazil: new minerals in the carbonate-halide association. Can Mineral. 2013;51:669–688.
  • Logvinova AM, Wirth R, Fedorova EN, et al. Nanometre-sized mineral and fluid inclusions in cloudy siberian diamonds: new insights on diamond formation. Eur J Mineral. 2008;20:317–331.
  • Golovin AV, Sharygin IS, Korsakov AV, et al. Can primitive kimberlite melts be alkali-carbonate liquids: composition of the melt snapshots preserved in deepest mantle xenoliths. J Raman Spectrosc. 2020;51:1849–1867.
  • Abersteiner A, Kamenetsky VS, Goemann K, et al. Composition and emplacement of the benfontein kimberlite sill complex (kimberley, South Africa): textural, petrographic and melt inclusion constraints. Lithos. 2019;324-325:297–314.
  • Sharygin IS, Golovin AV, Tarasov AA, et al. Confocal Raman spectroscopic study of melt inclusions in olivine of mantle xenoliths from the bultfontein kimberlite pipe (kimberley cluster, South Africa): Evidence for alkali-rich carbonate melt in the mantle beneath kaapvaal craton. J Raman Spectrosc. 2022; doi:10.1002/jrs.6198.
  • Kamenetsky VS, Golovin AV, Maas R, et al. Towards a new model for kimberlite petrogenesis: Evidence from unaltered kimberlites and mantle minerals. Earth Sci Rev. 2014;139:145–167.
  • Krogh EJ. The garnet-clinopyroxene Fe-Mg geothermometer ? a reinterpretation of existing experimental data. Contrib Mineral Petrol. 1988;99:44–48.
  • Weiss Y, McNeill J, Pearson DG, et al. Highly saline fluids from a subducting slab as the source for fluid-rich diamonds. Nature. 2015;524:339–342.
  • Klein-BenDavid O, Izraeli ES, Hauri E, et al. Fluid inclusions in diamonds from the diavik mine, Canada and the evolution of diamond-forming fluids. Geochim Cosmochim Acta. 2007;71:723–744.
  • Osugi J, Shimizu K, Inoue K, et al. A compact cubic anvil high pressure apparatus. Rev Phys Chem Jpn. 1964;34:1–6.
  • Ohtani E, Kagawa N, Shimomura O, et al. High-pressure generation by a multiple anvil system with sintered diamond anvils. Rev Sci Instrum. 1989;60:922–925.
  • Shatskiy A, Litasov KD, Terasaki H, et al. Performance of semi-sintered ceramics as pressure-transmitting media up to 30 GPa. High Press Res. 2010;30:443–450.
  • Shatskiy A, Podborodnikov IV, Arefiev AV, et al. Revision of the CaCO3–MgCO3 phase diagram at 3 and 6 GPa. Am Mineral. 2018;103:441–452.
  • Hemingway BS, Bohlen SR, Hankins W, et al. Heat capacity and thermodynamic properties for coesite and jadeite, reexamination of the quartz-coesite equilibrium boundary. Am Mineral. 1998;83:409–418.
  • Ono S, Kikegawa T, Higo Y. In situ observation of a garnet/perovskite transition in CaGeO3. Phys Chem Miner. 2011;38:735–740.
  • Shatskiy A, Sharygin IS, Gavryushkin PN, et al. The system K2CO3-MgCO3 at 6 GPa and 900-1450 C. Am Mineral. 2013;98:1593–1603.
  • Lavrent’ev YG, Karmanov NS, Usova LV. Electron probe microanalysis of minerals: microanalyzer or scanning electron microscope? Russ Geol Geophys. 2015;56:1154–1161.
  • Pistorius CWFT. Melting curves of the potassium halides at high pressures. J Phys Chem Solids. 1965;26:1543–1548.
  • Shatskiy A, Borzdov YM, Litasov KD, et al. Phase relationships in the system K2CO3-CaCO3 at 6 GPa and 900-1450 C. Am Mineral. 2015;100:223–232.
  • Druzhbin D, Rashchenko S, Shatskiy A, et al. New high-pressure and high-temperature CaCO3polymorph. ACS Earth and Space Chemistry. 2022;6:1506–1513.
  • Arefiev AV, Shatskiy A, Podborodnikov IV, et al. The system K2CO3–CaCO3 at 3 GPa: link between phase relations and variety of K–Ca double carbonates at ≤ 0.1 and 6 GPa. Phys Chem Miner. 2019;46:229–244.
  • Ishii T, Ohtani E, Shatskiy A. Aluminum and hydrogen partitioning between bridgmanite and high-pressure hydrous phases: Implications for water storage in the lower mantle. Earth Planet Sci Lett. 2022;583:117441. doi:10.1016/j.epsl.2022.117441
  • Brey GP, Bulatov VK, Girnis AV. Melting of K-rich carbonated peridotite at 6–10GPa and the stability of K-phases in the upper mantle. Chem Geol 2011;281:333–342.
  • Litasov KD, Shatskiy A, Ohtani E, et al. Solidus of alkaline carbonatite in the deep mantle. Geol. 2013;41:79–82.
  • Bekhtenova A, Shatskiy A, Podborodnikov IV, et al. Phase relations in carbonate component of carbonatized eclogite and peridotite along subduction and continental geotherms. Gondwana Res. 2021;94:186–200.
  • Dalton JA, Presnall DC. Carbonatitic melts along the solidus of model lherzolite in the system CaO-MgO-Al 2 O 3 -SiO 2 -CO 2 from 3 to 7 GPa. Contrib Mineral Petrol. 1998;131:123–135.
  • Shatskiy A, Podborodnikov IV, Arefiev AV, et al. Pyroxene-carbonate reactions in the CaMgSi2O6 ± NaAlSi2O6 + MgCO3 ± Na2CO3 ± K2CO3 system at 3-6 GPa: Implications for partial melting of carbonated peridotite. Contrib Mineral Petrol. 2021;176:34.
  • Shatskiy A, Arefiev AV, Podborodnikov IV, et al. Origin of K-rich diamond-forming immiscible melts and CO2 fluid via partial melting of carbonated pelites at a depth of 180–200 km. Gondwana Res. 2019;75:154–171.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.