Publication Cover
High Pressure Research
An International Journal
Volume 42, 2022 - Issue 4
213
Views
0
CrossRef citations to date
0
Altmetric
Articles

In-situ X-ray diffraction and radiography of iron–silicate–water–sulfur system simulating behaviors of light elements during early Earth’s core–mantle segregation

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 349-363 | Received 05 Apr 2022, Accepted 13 Nov 2022, Published online: 24 Nov 2022

References

  • Rubie DC, Melosh HJ, Reid JE, et al. Mechanisms of metal–silicate equilibration in the terrestrial magma ocean. Earth Planet Sci Lett. 2003;205:239–255.
  • Stevenson DJ. Fluid dynamics of core formation. In: Newsom HE, Jones JH, editors. Origin of the Earth, New York: Oxford University Press; 1990. p. 231–250.
  • Dubrovinsky LS, Saxena SK, Tutti F, et al. In situ X-ray study of thermal expansion and phase transition of iron at multimegabar pressure. Phys Rev Lett. 2000;84:1720–1723.
  • Dewaele A, Loubeyre P, Occelli F, et al. Quasihydrostatic equation of state of iron above 2 mbar. Phys Rev Lett. 2006;97:215504.
  • Birch F. Elasticity and constitution of the Earth’s interior. J Geophys Res. 1952;57:227–286.
  • Poirier J-P. Light elements in the Earth’s outer core: a critical review. Phys Earth Planet Inter. 1994;85:319–337.
  • Wade J, Wood BJ, Core formation and the oxidation state of the Earth. Earth Planet Sci Lett. 2005;236:78–95
  • Righter K, Sutton SR, Danielson L, et al. Redox variations in the inner solar system with new constraints from vanadium XANES in spinels. Am Mineral. 2016;101:1928–1942.
  • Fukai Y. The iron-water reaction and the evolution of the Earth. Nature. 1984;308:174–175.
  • Iizuka-Oku R, Yagi T, Gotou H, et al. Hydrogenation of iron in the early stage of Earth’s evolution. Nat Commun. 2017;8:14096.
  • Tagawa S, Sakamoto N, Hirose K, et al. Experimental evidence for hydrogen incorporation into Earth’s core. Nat Comm. 2021;12:2588.
  • Shibazaki Y, Ohtani E, Terasaki H, et al. Effect of hydrogen on the melting temperature of FeS at high pressure: implications for the core of Ganymede. Earth Planet Sci Lett. 2011;301:153–158.
  • Shibazaki Y, Stagno V, Fei Y, et al. Effect of hydrogen on the melting temperature of Fe–FeS system at high pressure. SPring-8 Res Rep, A. 2016;4:181–184.
  • Iizuka-Oku R, Gotou H, Shito C, et al. Behavior of light elements in iron–silicate–water–sulfur system during early Earth’s evolution. Sci Rep. 2021;11:12632.
  • Terasaki H, Urakawa S, Funakoshi K, et al. In situ measurement of interfacial tension of Fe–S and Fe–P liquids under high pressure using X-ray radiography and tomography techniques. Phys Earth Planet Inter. 2009;174:220–226.
  • Terasaki H, Nishida K, Shibazaki Y, et al. Density measurement of Fe3C liquid using X-ray absorption image up to 10 GPa and effect of light elements on compressibility of liquid iron. J Geophys Res. 2010;115:B06207.
  • Gotou H, Yagi T, Iizuka R, et al. Application of X-ray radiography to study the segregation process of iron from silicate under high pressure and high temperature. High Press Res. 2015;35:130–138.
  • Bean VE, Akimoto S, Bell PM, et al. Another step toward an international practical pressure scale: second AIRAPT IPPS task group report. Physica B+C. 1986;139–140:52–54.
  • Yagi T, Akaogi M, Shimomura O, et al. In situ observation of the olivine-spinel phase transformation in Fe2SiO4 using synchrotron radiation. J Geophys Res. 1987;92:6207–6213.
  • Tange Y, Nishihara Y, Tsuchiya T. Unified analyses for P–V–T equation of state of MgO: a solution for pressure-scale problems in high P–T experiments. J Geophys Res: Solid Earth. 2009;114:B03208.
  • Seto Y, Nishio-Hamane D, Natai T, and Sata, N. Development of a software suite on X-ray diffraction experiments. Rev High Press Sci Technol. 2010;20:269–276. Japanese.
  • Nishida K, Suzuki A, Terasaki H, et al. Towards a consensus on the pressure and composition dependence of sound velocity in the liquid Fe–S system. Phys Earth Planet Inter. 2016;257:230–239.
  • Shen G, Mao H-K, Hemley RJ, et al. Melting and crystal structure of iron at high pressures and temperatures. Geophys Res Lett. 1998;25:373–376.
  • Urakawa S, Someya K, Terasaki H, et al. Phase relationships and equations of state for FeS at high pressures and temperatures and implications for the internal structure of Mars. Phys Earth Planet Inter. 2004;143–144:469–479.
  • Terasaki, H, Urakawa S, Rubie DC, et al. Interfacial tension of Fe–Si liquid at high pressure: implications for liquid Fe-alloy droplet size in magma oceans. Phys Earth Planet Inter. 2012;202–203:1–6.
  • Morard G, Katsura T. Pressure–temperature cartography of Fe–S–Si immiscible system. Geochim Cosmochim Acta. 2010;74:3659–3667.
  • Sanloup C, Fei Y. Closure of the Fe–S–Si liquid miscibility gap at high pressure. Phys Earth Planet Inter. 2004;147:57–65.
  • Dasgupta R, Buono A, Whelan G, et al. High-pressure melting relations in Fe–C–S systems: implications for formation, evolution, and structure of metallic cores in planetary bodies. Geochim Cosmochim Acta. 2009;73:6678–6691.
  • Dasgupta R, Chi H, Shimizu N, et al. Carbon solution and partitioning between metallic and silicate melts in a shallow magma ocean: implications for the origin and distribution of terrestrial carbon. Geochim Cosmochim Acta. 2013;102:191–212.
  • Néri A, Monnereau M, Guignard J, et al. Textural evolution of metallic phases in a convecting magma ocean: a 3D microtomography study. Phys Earth Planet Inter. 2021;319:106771.
  • Yoshino T, Watson EB. Growth kinetics of FeS melt in partially molten peridotite: an analog for core-forming processes. Earth Planet Sci Lett. 2005;235:453–468.
  • Narygina O, Dubrovinsky LS, McCammon CA, et al. X-ray diffraction and Mössbauer spectroscopy study of fcc iron hydride FeH at high pressures and implications for the composition of the Earth's core. Earth Planet Sci Lett. 2011;307:409–414.
  • Ohta K, Suehiro S, Hirose K. Electrical resistivity of fcc phase iron hydrides at high pressures and temperatures. C R Geosci. 2019;351:147–153.
  • Hirose K, Tagawa S, Kuwayama Y, et al. Hydrogen limits carbon in liquid iron. Geophys Res Lett. 2019;46:5190.
  • Siebert J, Badro J, Antonangeli D, et al. Terrestrial accretion under oxidizing conditions. Science. 2013;339:1194–1197.
  • Fischer RA, Nakajima Y, Campbell AJ, et al. High pressure metal–silicate partitioning of Ni, Co, V, Cr, Si, and O. Geochim Cosmochim Acta. 2015;167:177–194.
  • Marty B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet Sci Lett. 2012;313–314:56–66.
  • Takahashi S, Ohtani E, Terasaki H, et al. Phase relations in the carbon-saturated C–Mg–Fe–Si–O system and C and Si solubility in liquid Fe at high pressure and temperature: implications for planetary interiors. 2013;40:647–657 doi:10.1007/s00269-013-0600-x
  • Corgne A, Wood BJ, Fei Y. C and S-rich molten alloy immiscibility and core formation of planetesimals. Geochim Cosmochim Acta. 2008;72:2409–2416.
  • Boujibar A, Habermann M, Righter K, et al. U, Th, and K partitioning between metal, silicate, and sulfide and implications for Mercury’s structure, volatile content, and radioactive heat production. Am Mineral. 2019;104:1221–1237.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.