Publication Cover
High Pressure Research
An International Journal
Volume 43, 2023 - Issue 1
1,582
Views
0
CrossRef citations to date
0
Altmetric
Articles

On the creation of thermal equations of state for use in Dioptas

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 40-57 | Received 03 Feb 2023, Accepted 01 Mar 2023, Published online: 18 Mar 2023

References

  • Shimomura O, Takemura K, Fujihisa H, et al. Application of an imaging plate to high pressure x-ray study with a diamond anvil cell (invited). Rev Sci Instrum. 1992;63(1):967–973. DOI: 10.1063/1.1143793
  • Nelmes RJ, Hatton PD, McMahon MI, et al. Angle-dispersive powder-diffraction techniques for crystal structure refinement at high pressure. Rev Sci Instrum. 1992;63(1):1039–1042. DOI: 10.1063/1.1143193
  • Nelmes RJ, McMahon MI. High pressure powder diffraction on synchrotron sources. J Synchrotron Radiat. 1994;1(1):69–73. DOI: 10.1107/S0909049594006679
  • Piltz RO, McMahon MI, Crain J, et al. An imaging plate system for high pressure powder diffraction: the data processing side. Rev Sci Instrum. 1992;63(1):700–703. DOI: 10.1063/1.1142641
  • Hammersley AP, Svensson SO, Hanfland M, et al. Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Press Res. 1996;14(4-6):235–248. DOI: 10.1080/08957959608201408
  • Cervellino A, Giannini C, Guagliardi A, et al. Folding a two-dimensional powder diffraction image into a one-dimensional scan: a new procedure. J Appl Crystallogr. 2006;39(5):745–748. DOI: 10.1107/S0021889806026690
  • Hinrichsen B, Dinnebier RE, Rajiv P, et al. Advances in data reduction of high pressure x-ray powder diffraction data from two-dimensional detectors: a case study of schafarzikite (FeSbsub2/subOsub4/sub). J Phys Condens Matter. 2006;18(25):S1021–S1037. DOI: 10.1088/0953-8984/18/25/S09
  • Rodriguez-Navarro AB. XRD2DScan: new software for polycrystalline materials characterization using two-dimensional X-ray diffraction. J Appl Crystallogr. 2006;39(6):905–909. DOI:10.1107/S0021889806042488
  • Kieffer J, Wright JP. PyFAI: a Python library for high performance azimuthal integration on GPU. Powder Diffr. 2013;28(S2):S339–S350. DOI: 10.1017/S0885715613000924
  • Prescher C, Prakapenka VB. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press Res. 2015;35(3):223–230. DOI: 10.1080/08957959.2015.1059835
  • Merkel S. Example JCPDS file in the Version 4 format; 2006. Available from: https://merkel.texture.rocks/HPDiff/file_jcpds_4.php
  • Birch F. Finite elastic strain of cubic crystals. Phys Rev. 1947;71(11):809–824. DOI: 10.1103/PhysRev.71.809
  • Vinet P, Ferrante J, Rose JH, et al. Compressibility of solids. J Geophys Res Solid Earth. 1987;92(B9):9319–25. DOI: 10.1029/JB092iB09p09319
  • Holzapfel WB. Equations of state for solids under strong compression. High Press Res. 1998;16(2):81–126. DOI:10.1080/08957959808200283
  • Holzapfel WB. Equations of state for solids under strong compression. Z Krystallog. 2001;216(9):473–88. DOI:10.1524/zkri.216.9.473.20346
  • Speziale S, Zha CS, Duffy TS, et al. Quasi-hydrostatic compression of magnesium oxide to 52 GPa: implications for the pressure-volume-temperature equation of state. J Geophys Res Solid Earth. 2001;106(B1):515–528. DOI: 10.1029/2000JB900318
  • Fei Y, Li J, Hirose K, et al. A critical evaluation of pressure scales at high temperatures by in situ X-ray diffraction measurements. Phys Earth Planet Inter. 2004;143–144:515–526. DOI: 10.1016/j.pepi.2003.09.018
  • Dorogokupets PI, Oganov AR. Ruby, metals, and MgO as alternative pressure scales: a semiempirical description of shock-wave, ultrasonic, x-ray, and thermochemical data at high temperatures and pressures. Phys Rev B. 2007;75(2):Article ID 024115. DOI: 10.1103/PhysRevB.75.024115
  • Dorogokupets PI, Dewaele A. Equations of state of MgO, Au, Pt, NaCl-B1, and NaCl-B2: internally consistent high-temperature pressure scales. High Press Res. 2007;27(4):431–446. DOI: 10.1080/08957950701659700
  • Sokolova TS, Dorogokupets PI, Litasov KD. Self-consistent pressure scales based on the equations of state for ruby, diamond, MgO, B2–NaCl, as well as Au, Pt, and other metals to 4 Mbar and 3000 K. Russ Geol Geophys. 2013;54(2):181–199. DOI: 10.1016/j.rgg.2013.01.005
  • Sokolova TS, Dorogokupets PI, Dymshits AM, et al. Microsoft excel spreadsheets for calculation of PVT relations and thermodynamic properties from equations of state of MgO, diamond and nine metals as pressure markers in high pressure and high-temperature experiments. Comput Geosci. 2016;94:162–169. DOI: 10.1016/j.cageo.2016.06.002
  • Finger LW, Hazen RM, Zou G, et al. Structure and compression of crystalline argon and neon at high pressure and room temperature. Appl Phys Lett. 1981;39(11):892–894. DOI: 10.1063/1.92597
  • Fei Y, Ricolleau A, Frank M, et al. Toward an internally consistent pressure scale. Proc Natl Acad Sci USA. 2007;104(22):9182–9186. Available from: https://www.jstor.org/stable/25427827 DOI: 10.1073/pnas.0609013104
  • Dewaele A, Datchi F, Loubeyre P, et al. High pressure-high temperature equations of state of neon and diamond. Phys Rev B. 2008;77(9):Article ID 094106. DOI: 10.1103/PhysRevB.77.094106
  • Dorogokupets PI, Dymshits AM, Litasov KD, et al. Thermodynamics and equations of state of iron to 350 GPa and 6000 K. Sci Rep. 2017;7(1):Article ID 41863. DOI:10.1038/srep41863
  • Mao HK, Wu Y, Chen LC, et al. Static compression of iron to 300 GPa and Fesub0.8/subNisub0.2/suballoy to 260 GPa: implications for composition of the core. J Geophys Res. 1990;95(B13):Article ID 21737. DOI:10.1029/jb095ib13p21737
  • Tateno S, Hirose K, Ohishi Y, et al. The structure of iron in earth's inner core. Science. 2010;330(6002):359–361. DOI: 10.1126/science.1194662
  • Dewaele A, Loubeyre P, Occelli F, et al. Quasihydrostatic equation of state of iron above 2 Mbar. Phys Rev Lett. 2006;97(21):Article ID 215504. DOI: 10.1103/PhysRevLett.97.215504
  • Dewaele A, Belonoshko AB, Garbarino G, et al. High pressure–high-temperature equation of state of KCl and KBr. Phys Rev B. 2012;85(21):Article ID 214105. DOI: 10.1103/PhysRevB.85.214105
  • Chidester BA, Thompson EC, Fischer RA, et al. Experimental thermal equation of state of B2-KCl. Phys Rev B. 2021;104(9):Article ID 094107. DOI: 10.1103/PhysRevB.104.094107
  • Corish J, Catlow CRA, Jacobs PWM. The relationship between experimental and calculated point defect energies. J Physique Lett. 1981;42(15):369–372. DOI: 10.1051/jphyslet:019810042015036900
  • Shen G, Wang Y, Dewaele A, et al. Toward an international practical pressure scale: a proposal for an IPPS ruby gauge (IPPS-Ruby2020). High Press Res. 2020;40(3):299–314. DOI:10.1080/08957959.2020.1791107
  • Fratanduono DE, Smith RF, Ali SJ, et al. Probing the solid phase of noble metal copper at terapascal conditions. Phys Rev Lett. 2020;124:1Article ID 015701. DOI:10.1103/PhysRevLett.124.015701
  • Fratanduono DE, Millot M, Braun DG, et al. Establishing gold and platinum standards to 1 terapascal using shockless compression. Science. 2021;372(6546):1063–1068. DOI:10.1126/science.abh0364
  • Gorman MG, Wu CJ, Smith RF, et al. Ramp compression of tantalum to multiterapascal pressures: constraints of the thermal equation of state to 2.3 TPa and 5000 K. Phys Rev B. 2023;107(1):Article ID 014109. DOI: 10.1103/PhysRevB.107.014109