Publication Cover
High Pressure Research
An International Journal
Volume 43, 2023 - Issue 1
1,773
Views
0
CrossRef citations to date
0
Altmetric
Articles

Thermal conductivity of platinum and periclase under extreme conditions of pressure and temperature

, , ORCID Icon &
Pages 68-80 | Received 17 Jan 2023, Accepted 18 Mar 2023, Published online: 27 Mar 2023

References

  • Anzellini S, Boccato S. A practical review of the laser-heated diamond anvil cell for university laboratories and synchrotron applications. Crystals. 2020;10:459.
  • Kavner A, Panero WR. Temperature gradients and evaluation of thermoelastic properties in the synchrotron-based laser-heated diamond cell. Phys Earth Planet Inter. 2004;143–144:527–539.
  • Rainey ESG, Kavner A. Peak scaling method to measure temperatures in the laser-heated diamond anvil cell and application to the thermal conductivity of MgO. J Geophys Res. 2014;119:8154–8170.
  • Hasegawa A, Yagi T, Ohta K. Combination of pulsed light heating thermoreflectance and laser-heated diamond anvil cell for in-situ high pressure-temperature thermal diffusivity measurements. Rev Sci Instrum. 2019;90:074901.
  • Vohra YK, Ruoff AL. Static compression of metals Mo, Pb, and Pt to 272 GPa: comparison with shock data. Phys Rev B. 1990;42:8651–8654.
  • Fratanduono DE, Millot M, Braun DG, et al. Establishing gold and platinum standards to 1 terapascal using shockless compression. Science. 2021;372:1063–1068.
  • Murakami MH, Kawamura KK, Sata N, et al. Post-perovskite phase transition. Science. 2004;304:855–858.
  • Goncharov AF, Beck P, Struzhkin VV, et al. Thermal conductivity of lower-mantle minerals. Phys Earth Planet Inter. 2009;174:24–32.
  • Ohta K, Yagi T, Taketoshi N, et al. Lattice thermal conductivity of MgSiO3 perovskite and post-perovskite at the core–mantle boundary. Earth Planet Sci Lett. 2012;349–350:109–115.
  • Ezenwa IC, Yoshino T. Electrical resistivity of solid and liquid Pt: insight into electrical resistivity of ϵ-Fe. Earth Planet Sci Lett. 2020;544:116380.
  • Ho CY, Powell RW, Liley PE. Thermal conductivity of the elements. J Phys Chem Ref Data. 1972;1:279–421.
  • Gomi H, Yoshino T. Resistivity, seebeck coefficient, and thermal conductivity of platinum at high pressure and temperature. Phys Rev B. 2019;100:214302.
  • McWilliams RS, Konôpková Z, Goncharov AF. A flash heating method for measuring thermal conductivity at high pressure and temperature: application to Pt. Phys Earth Planet Inter. 2015;247:17–26.
  • Katsura T. A revised adiabatic temperature profile for the mantle. J Geophys Res. 2022;127:e2021JB023562.
  • Brown JM, Shankland TJ. Thermodynamic parameters in the earth as determined from seismic profiles. Geophys J Inter. 1981;66:579–596.
  • Tateno S, Hirose K, Sata N, et al. Determination of post-perovskite phase transition boundary up to 4400 K and implications for thermal structure in D” layer. Earth Planet Sci Lett. 2009;277:130–136.
  • McWilliams RS, Spaulding DK, Eggert JH, et al. Phase transformations and metallization of magnesium oxide at high pressure and temperature. Science. 2012;338:1330–1333.
  • Coppari F, Smith RF, Eggert JH, et al. Experimental evidence for a phase transition in magnesium oxide at exoplanet pressures. Nat Geosci. 2013;6:926–929.
  • Tange Y, Nishihara Y, Tsuchiya T. Unified analyses for P-V-T equation of state of MgO: A solution for pressure-scale problems in high P-T experiments. J Geophys Res. 2009;114:B03208.
  • Beck P, Goncharov AF, Struzhkin VV, et al. Measurement of thermal diffusivity at high pressure using a transient heating technique. Appl Phys Lett. 2007;91:181914.
  • Brown JM. Interpretation of the D” zone at the base of the mantle: dependence on assumed values of thermal conductivity. Geophys Res Lett. 1986;13:1509–1512.
  • Dalton DA, Hsieh WP, Hohensee GT, et al. Effect of mass disorder on the lattice thermal conductivity of MgO periclase under pressure. Sci Rep. 2013;3:2400.
  • de Koker N. Thermal conductivity of MgO periclase at high pressure: implications for the D” region. Earth Planet Sci Lett. 2010;292:392–398.
  • Dekura H, Tsuchiya T. Ab initio lattice thermal conductivity of MgO from a complete solution of the linearized Boltzmann transport equation. Phys Rev B. 2017;95:184303.
  • Haigis V, Salanne M, Jahn S. Thermal conductivity of MgO, MgSiO3 perovskite and post-perovskite in the earth's deep mantle. Earth Planet Sci Lett. 2012;355–356:102–108.
  • Hofmeister AM. Thermal diffusivity and thermal conductivity of single-crystal MgO and Al2O3 and related compounds as a function of temperature. Phys Chem Minerals. 2014;41:361–371.
  • Imada S, Ohta K, Yagi T, et al. Measurements of lattice thermal conductivity of MgO to core-mantle boundary pressures. Geophys Res Lett. 2014;41:4542–4547.
  • Kanamori H, Fujii N, Mizutani H. Thermal diffusivity measurement of rock-forming minerals from 300° to 1100°K. J Geophys Res. 1968;73:595–605.
  • Katsura T. Thermal diffusivity of periclase at high temperatures and high pressures. Phys Earth Planet Inter. 1997;101:73–77.
  • Manga M, Jeanloz R. Thermal conductivity of corundum and periclase and implications for the lower mantle. J Geophys Res. 1997;102:2999–3008.
  • Manthilake GM, de Koker N, Frost DJ, et al. Lattice thermal conductivity of lower mantle minerals and heat flux from earth's core. Proc Natl Acad Sci U S A. 2011;108:17901–17904.
  • Song Y, He K, Sun J, et al. Effects of iron spin transition on the electronic structure, thermal expansivity and lattice thermal conductivity of ferropericlase: a first principles study. Sci Rep. 2019;9:4172.
  • Stackhouse S, Stixrude L, Karki BB. Thermal conductivity of periclase (MgO) from first principles. Phys Rev Lett. 2010;104:208501.
  • Tang X, Dong J. Lattice thermal conductivity of MgO at conditions of earth's interior. Proc Natl Acad Sci U S A. 2010;107:4539–4543.
  • Hsieh WP, Deschamps F, Okuchi T, et al. Effects of iron on the lattice thermal conductivity of earth's deep mantle and implications for mantle dynamics. Proc Natl Acad Sci U S A. 2018;115:4099–4104.
  • Ohta K, Yagi T, Hirose K, et al. Thermal conductivity of ferropericlase in the earth's lower mantle. Earth Planet Sci Lett. 2017;465:29–37.
  • Akahama Y, Kawamura H. High-pressure Raman spectroscopy of diamond anvils to 250 GPa: method for pressure determination in the multimegabar pressure range. J Appl Phys. 2004;96:3748–3751.
  • Yagi T, Ohta K, Kobayashi K, et al. Thermal diffusivity measurement in a diamond anvil cell using a light pulse thermoreflectance technique. Meas Sci & Technol. 2011;22:024011.
  • Matsui M, Ito E, Katsura T, et al. The temperature-pressure-volume equation of state of platinum. J Appl Phys. 2009;105:013505.
  • Baba T. Analysis of One-dimensional heat diffusion after light pulse heating by the response function method. Jpn J Appl Phys. 2009;48:05EB04.
  • Okuda Y, Ohta K, Yagi T, et al. The effect of iron and aluminum incorporation on lattice thermal conductivity of bridgmanite at the earth’s lower mantle. Earth Planet Sci Lett. 2017;474:25–31.
  • Okuda Y, Ohta K, Sinmyo R, et al. Effect of spin transition of iron on the thermal conductivity of (Fe, Al)-bearing bridgmanite. Earth Planet Sci Lett. 2019;520:188–198.
  • Okuda Y, Ohta K, Hasegawa A, et al. Thermal conductivity of Fe-bearing post-perovskite in the earth’s lowermost mantle. Earth Planet Sci Lett. 2020;547:116466.
  • Hasegawa A, Ohta K, Yagi T, et al. Composition and pressure dependence of lattice thermal conductivity of (Mg, Fe)O solid solutions. C R Geoscience. 2019;351:229–235.
  • Zhang Z, Zhang D-B, Onga K, et al. Thermal conductivity of CaSiO3 perovskite at lower mantle conditions. Phys Rev B. 2021;104:184101.
  • Pozzo M, Davies C, Gubbins D, et al. Thermal and electrical conductivity of solid iron and iron–silicon mixtures at earth's core conditions. Earth Planet Sci Lett. 2014;393:159–164.
  • Kleinschmidt U, French M, Steinle-Neumann G, et al. Electrical and thermal conductivity of fcc and hcp iron under conditions of the earth’s core from ab initio simulations. Phys Rev B. 2023;107:085145.
  • Marsh SP. LASL shock Hugoniot data. Berkeley: Univ of California Press; 1980.
  • Roufosse MC, Klemens PG. Lattice thermal conductivity of minerals at high temperatures. J Geophys Res. 1974;79:703–705.
  • Smith DS, Fayette S, Grandjean S, et al. Thermal resistance of grain boundaries in alumina ceramics and refractories. J Am Ceram Soc. 2003;86:105–111.