Publication Cover
High Pressure Research
An International Journal
Volume 43, 2023 - Issue 1
123
Views
0
CrossRef citations to date
0
Altmetric
Articles

Refractive index of shock-compressed liquid nitrogen up to 29 GPa

ORCID Icon, &
Pages 81-95 | Received 06 Dec 2022, Accepted 19 Mar 2023, Published online: 31 Mar 2023

References

  • Takemura K, Minomura S, Shimomura O, et al. Observation of molecular dissociation of iodine at high pressure by x-ray diffraction. Phys Rev Lett. 1980;45(23):1881.
  • Katoh E, Yamawaki H, Fujihisa H, et al. Raman study of phase transition and hydrogen bond symmetrization in solid DCl at high pressure. Phys Rev B. 2000;61(1):119.
  • Goncharov AF, Struzhkin VV, Mao H, et al. Raman spectroscopy of dense H2O and the transition to symmetric hydrogen bonds. Phys Rev Lett. 1999;83(10):1998.
  • Nellis WJ, Mitchell AC. Shock compression of liquid argon, nitrogen, and oxygen to 90 GPa (900 kbar). J Chem Phys. 1980;73(12):6137–6145.
  • Nellis WJ, Radousky HB, Hamilton DC, et al. Equation-of-state, shock-temperature, and electrical-conductivity data of dense fluid nitrogen in the region of the dissociative phase transition. J Chem Phys. 1991;94(3):2244–2257.
  • Trunin RF, Boriskov GV, Bykov AI, et al. Shock compression of liquid nitrogen at a pressure of 320 GPa. JETP Lett. 2008;88(3):189–191.
  • Mochalov MA, Zhernokletov MV, Il’kaev RI, et al. Measurement of density, temperature, and electrical conductivity of a shock-compressed nonideal nitrogen plasma in the megabar pressure range. J Exp Theor Phys. 2010;110(1):67–80.
  • Sabeeh Akram M, Fan ZN, Zhang MJ, et al. Measuring the shock Hugoniot data of liquid nitrogen using a cryogenic system for shock compression. J Appl Phys. 2020;128(22):225901.
  • Zhernokletov MV, Kovalev AE, Novikov MG, et al. Shock-wave compression of nitrogen fluid in the pressure range of 140–250 GPa. J Exp Theor Phys. 2023;163(2):274–283.
  • McMahan AK, LeSar R. Pressure dissociation of solid nitrogen under 1 Mbar. Phys Rev Lett. 1985;54(17):1929.
  • Martin RM, Needs RJ. Theoretical study of the molecular-to-nonmolecular transformation of nitrogen at high pressures. Phys Rev B. 1986;34(8):5082.
  • Mailhiot C, Yang LH, McMahan AK. Polymeric nitrogen. Phys Rev B. 1992;46(22):14419.
  • Frost M, Howie RT, Dalladay-Simpson P, et al. Novel high-pressure nitrogen phase formed by compression at low temperature. Phys Rev B. 2016;93(2):024113.
  • Turnbull R, Hanfland M, Binns J, et al. Unusually complex phase of dense nitrogen at extreme conditions. Nat Commun. 2018;9(1):1–6.
  • Pickard CJ, Needs RJ. High-pressure phases of nitrogen. Phys Rev Lett. 2009;102(12):125702.
  • Ross M, Rogers F. Polymerization, shock cooling, and the high-pressure phase diagram of nitrogen. Phys Rev B. 2006;74(2):024103.
  • Donadio D, Spanu L, Duchemin I, et al. Ab initio investigation of the melting line of nitrogen at high pressure. Phys Rev B. 2010;82(2):020102.
  • Boates B, Bonev SA. First-order liquid-liquid phase transition in compressed nitrogen. Phys Rev Lett. 2009;102(1):015701.
  • Boates B, Bonev SA. Electronic and structural properties of dense liquid and amorphous nitrogen. Phys Rev B. 2011;83(17):174114.
  • Yakub ES, Yakub LN. Equation of state and second critical point of highly compressed nitrogen. Fluid Phase Equilib. 2013;351:43–47.
  • Reichlin R, Schiferl D, Martin S, et al. Optical studies of nitrogen to 130 GPa. Phys Rev Lett. 1985;55(14):1464.
  • Zinn AS, Schiferl D, Nicol MF. Raman spectroscopy and melting of nitrogen between 290 and 900 K and 2.3 and 18 GPa. J Chem Phys. 1987;87(2):1267–1271.
  • Goncharov AF, Crowhurst JC. Raman spectroscopy of hot compressed hydrogen and nitrogen: implications for the intramolecular potential. Phys Rev Lett. 2006;96(5):055504.
  • Goncharov AF, Gregoryanz E, Mao H, et al. Optical evidence for a nonmolecular phase of nitrogen above 150 GPa. Phys Rev Lett. 2000;85(6):1262.
  • Goncharov AF, Crowhurst JC, Struzhkin VV, et al. Triple point on the melting curve and polymorphism of nitrogen at high pressure. Phys Rev Lett. 2008;101(9):095502.
  • Badoz J, Liboux ML, Nahoum R, et al. A sensitive cryogenic refractometer. Application to the refractive index determination of pure or mixed liquid methane, ethane, and nitrogen. Rev sci Instrum. 1992;63(5):2967–2973.
  • Zhang J, Lu ZH, Wang LJ. Precision refractive index measurements of air, N_2, O_2, Ar, and CO_2 with a frequency comb, N 2, O 2, Ar, and CO 2 with a frequency comb. Appl opt. 2008;47(17):3143–3151.
  • Li J, Liu L, Tang J, et al. Refractive index measurement of compressed nitrogen using an infrared frequency-domain interferometer. Optik (Stuttg). 2018;164:1–4.
  • Xiao GZ, Adnet A, Zhang Z, et al. Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor. Sens Actuators A. 2005;118(2):177–182.
  • Vidal D, Lallemand M. Evolution of the Clausius–Mossotti function of noble gases and nitrogen, at moderate and high density, near room temperature. J Chem Phys. 1976;64(11):4293–4302.
  • Jiang S, Holtgrewe N, Lobanov SS, et al. Structural absorption by barbule microstructures of super black bird of paradise feathers. Nat Commun. 2018;9(1):1–6.
  • Ninet S, Weck G, Dewaele A, et al. Sound velocity and refractive index of pure N2 fluid and of equimolar N2–CO2 fluid mixture up to 15 GPa. J Chem Phys. 2020;153(11):114503.
  • Cao X, Li J, Li J, et al. Refractive index of r-cut sapphire under shock pressure range 5 to 65 GPa. J Appl Phys. 2014;116(9):0093516.
  • Rigg PA, Knudson MD, Scharff RJ, et al. Determining the refractive index of shocked [100] lithium fluoride to the limit of transmissibility. J Appl Phys. 2014;116(3):0033515.
  • Huang JW, Liu QC, Zeng XL, et al. Refractive indices of Gd3Ga5O12 single crystals under shock compression to 100–290 GPa. J Appl Phys. 2015;118(20):205902.
  • Cao X, Wang Y, Li X, et al. Refractive index and phase transformation of sapphire under shock pressures up to 210 GPa. J Appl Phys. 2017;121(11):115903.
  • Akram MS, Sattar S, Fan ZN, et al. Measurement of shock and re-shock Hugoniot data of liquid nitrogen. High Press Res. 2022;42(1):57–68.
  • Wu X, Akram MS, Liu FS, et al. Simulation based study of magnetic velocity induction system by using analysis system electromagnetics suite. Rev Sci Instrum. 2021;92(9):0094708.
  • Bordzilovskii SA, Karakhanov SM, Khishchenko KV. Brightness temperature of water compressed by a double shock to pressures of 60–79 GPa. Shock Waves. 2020;30:505–511.
  • Chen QF, Zheng J, Gu YJ, et al. Thermophysical properties of multi-shock compressed dense argon. J Chem Phys. 2014;140(7):0074202.
  • Nagayama K, Mori Y, Shimada K, et al. Shock hugoniot compression curve for water up to 1 GPa by using a compressed gas gun. J Appl Phys. 2002;91(1):476–482.
  • Kim YJ, Militzer B, Boates B, et al. Evidence for dissociation and ionization in shock compressed nitrogen to 800 GPa. Phys rev Lett. 2022;129(1):015701.
  • Mani P, Rallapalli A, Machavaram VR, et al. Monitoring phase changes in supercooled aqueous solutions using an optical fiber Fresnel reflection sensor. Opt Express. 2016;24(5):5395–5410.
  • Celliers PM, Collins GW, Hicks DG, et al. Systematic uncertainties in shock-wave impedance-match analysis and the high-pressure equation of state of Al. J Appl Phys. 2005;98(11):113529.
  • Li F, Li M, Cui Q, et al. The velocity, refractive index, and equation of state of liquid ammonia at high temperatures and high pressures. J Chem Phys. 2009;131(13):134502.
  • Eggert JH, Xu L, Che R, et al. High pressure refractive index measurements of 4:1 methanol:ethanol. J Appl Phys. 1992;72(6):2453–2461.
  • Kerl K, Hohm U, Varchmin H. Polarizability α (ω, T, ρ) of small molecules in the Gas phase. Ber Bunsen-Ges Phys Chem. 1992;96(5):728–733.
  • Balchan AS, Cowan GR. Method for accelerating flat plates to high velocity. Rev Sci Instrum. 1964;35(8):937–944.
  • Marsh SP, editor. LASL shock Hugoniot data. Berkeley: University of California press; 1980.
  • Carter WJ. Hugoniot equation of state of some alkali halides. High Temp – High Pressures. 1973;5(3):313–318.
  • Kress JD, Mazevet S, Collins LA, et al. Density-functional calculation of the Hugoniot of shocked liquid nitrogen. Phys Rev B. 2000;63(2):024203.
  • Waxler RM, Weir CE. Effect of hydrostatic pressure on the refractive indices of some solids. Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry. 1965;69A(4):325.
  • Schiebener P, Straub J, Levelt Sengers JMH, et al. Refractive index of water and steam as function of wavelength, temperature and density. J Phys Chem Ref Data. 1990;19(3):677–717.
  • Eremets MI, Hemley RJ, Mao H, et al. Semiconducting non-molecular nitrogen up to 240 GPa and its low-pressure stability. Nat. 2001;411(6834):170–174.
  • Radousky HB, Nellis WJ, Ross M, et al. Molecular dissociation and shock-induced cooling in fluid nitrogen at high densities and temperatures. Phys Rev Lett. 1986;57(19):2419.
  • Moore DS, Schmidt SC, Shaw MS, et al. Coherent anti-Stokes Raman spectroscopy of shock-compressed liquid nitrogen. J Chem Phys. 1989;90(3):1368–1376.
  • Lacina D, Gupta YM. Molecular response of liquid nitrogen multiply shocked to 40 GPa. J Chem Phys. 2014;141(8):0084503.
  • He J, Liu W, Huang YX. Simultaneous determination of glass transition temperatures of several polymers. PLoS One. 2016;11(3):e0151454.
  • Li J, Gauza S, Wu ST. Temperature effect on liquid crystal refractive indices. J Appl Phys. 2004;96(1):19–24.
  • Subedi DP, Adhikari DR, Joshi UM, et al. Study of temperature and concentration dependence of refractive index of liquids using a novel technique. Kathmandu Univ J Sci Eng Technol. 2006;2(1):1–7.
  • Liu L, Chen QF, Gu YJ, et al. Measurement of multiple physical parameters of dense gaseous hydrogen-deuterium mixture under double-shock compression: evaluating theoretical models from multiple views. Appl Phys Lett. 2019;115(23):231905.
  • Sanchez-Valle C, Mantegazzi D, Bass JD, et al. Equation of state, refractive index and polarizability of compressed water to 7 GPa and 673 K. J Chem Phys. 2013;138(5):0054505.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.