Publication Cover
High Pressure Research
An International Journal
Volume 43, 2023 - Issue 3
124
Views
0
CrossRef citations to date
0
Altmetric
Articles

Use of finite element analysis for the thermal gradient determination of a neutron transparent high-pressure sample environment for neutron tomography

ORCID Icon, , , &
Pages 215-230 | Received 27 Feb 2023, Accepted 12 Jun 2023, Published online: 24 Jun 2023

References

  • Katsura T, Yokoshi S, Song M, et al. Olivine-wadsleyite transition in the system (Mg,Fe)2SiO4. J Geophys Res Solid Earth. 2004;109:1–10. doi:10.1029/2003JB002438
  • Katsura T, Yokoshi S, Kawabe K, et al. P-V-T relations of MgSiO3 perovskite determined by in situ X-ray diffraction using a large-volume high-pressure apparatus. Geophys Res Lett. 2009;36:2–7
  • Sano-Furukawa A, Hattori T, Arima H, et al. Six-axis multi-anvil press for high-pressure, high-temperature neutron diffraction experiments. Rev Sci Instrum. 2014;85:113905. doi:10.1063/1.4901095
  • Rubie DC, Karato S, Yan H, et al. Low differential stress and controlled chemical environment in multianvil high-pressure experiments. Phys Chem Miner. 1993;20:315–322. doi:10.1007/BF00215102
  • Perrillat JP, Daniel I, Bolfan-Casanova N, et al. Mechanism and kinetics of the α-β transition in San carlos olivine Mg1.8Fe0.2SiO4. J Geophys Res Solid Earth. 2013;118:110–119. doi:10.1002/jgrb.50061
  • Grigorova V. Developing a system for the measurements of solid and melt’s density under mantle conditions using neutron tomography; 2021.
  • Duffy TS. Synchrotron facilities and the study of the earth’s deep interior. Reports Prog Phys. 2005;68:1811–1859. doi:10.1088/0034-4885/68/8/R03
  • Wang Y, Sakamaki T, Skinner LB, et al. Atomistic insight into viscosity and density of silicate melts under pressure. Nat Commun [Internet]. 2014;5:1–10. doi:10.1038/ncomms4241
  • Buzea C, Robbie K. Assembling the puzzle of superconducting elements: A review. Supercond Sci Technol. 2005;18. doi:10.1088/0953-2048/18/1/R01
  • Marques M, Morales A, Menendez JM. Structure prediction at high pressures. In: Recio M, Menendez JM, de la Roza AO, editors. Introduction to high-pressure science and technology. Boca Raton: ERC Press; 2016. p. 105–130.
  • McMillan PF. High-pressure synthesis of materials. In: Boldyreva E, Dera P, editors. High-pressure crystallography: from fundamental phenomena to technological application. Dordrecht: Springer; 2010. p. 373–383.
  • Godec L, Courac Y, Solozhenko A, et al. High-pressure synthesis of superhard and ultrahard materials. J Appl Phys. 2019;126:151102. doi:10.1063/1.5111321
  • Baonza VG, Sánchez-Benítez J. High-pressure generation and pressure scales. In: Recio M, Menendez JM, de la Roza AO, editors. Introduction to high-pressure science and technology. Boca Raton: ERC Press; 2016. p. 105–130.
  • Heinen BJ, Drewitt JWE, Walter MJ, et al. Internal resistive heating of non-metallic samples to 3000 K and >60 GPa in the diamond anvil cell. Rev Sci Instrum. 2021;92:063904. doi:10.1063/5.0038917
  • Besson JM, Weill G, Hamel G, et al. Equation of state of lithium deuteride from neutron diffraction under high pressure. Phys Rev B. 1992;45:2613–2619. doi:10.1103/PhysRevB.45.2613
  • Mezouar M, Le Bihan T, Libotte H, et al. Paris-Edinburgh large-volume cell coupled with a fast imaging-plate system for structural investigation at high pressure and high temperature. J Synchrotron Radiat. 1999;6:1115–1119. doi:10.1107/S0909049599010651
  • Crichton WA, Mezouar M. Noninvasive pressure and temperature estimation in large-volume apparatus by equation-of-state cross-calibration. High Temp-High Press. 2002;34:235–242.
  • Fowler PH, Taylor AD. Temperature imaging using epithermal neutrons. Chilton: Rutherford Applet Labora- tory; 1987. (Tech Rep RAL-87-056).
  • Walter U. A pressure cell for inelastic neutron scattering up to 35 kbar. Rev Phys Appliquée. 1984;19:833–836. doi:10.1051/rphysap:01984001909083300
  • Wang W, Sokolov DA, Huxley AD, et al. Large volume high-pressure cell for inelastic neutron scattering. Rev Sci Instrum. 2011;82:073903. doi:10.1063/1.3608112
  • Jacobsen MK, Ridley CJ, Bocian A, et al. High-pressure cell for neutron diffraction with in situ pressure control at cryogenic temperatures. Rev Sci Instrum. 2014;85:043904. doi:10.1063/1.4870061
  • Fontanari V, Bellin F, Visintainer M, et al. Study of pressure sensitive plastic flow behaviour of gasket materials. Exp Mech [Internet]. 2006;46:313–323. Available from: http://link.springer.com/10.1007s11340-006-7105-1. doi:10.1007/s11340-006-7105-1
  • Adams DM, Shaw AC. A computer-aided design study of the behaviour of diamond anvils under stress. J Phys D Appl Phys. 1982;15:1609–1635. doi:10.1088/0022-3727/15/9/006
  • Bruno MS, Dunn KJ. Stress analysis of a beveled diamond anvil. Rev Sci Instrum. 1984;55:940–943. doi:10.1063/1.1137869
  • Moss WC, Goettel KA. Finite element design of diamond anvils. Appl Phys Lett. 1987;50:25–27. doi:10.1063/1.98115
  • Ridley CJ, Jacobsen MK, Kamenev KV. A finite-element study of sapphire anvils for increased sample volumes. High Press Res. 2015;35:148–161. doi:10.1080/08957959.2015.1009454
  • Adams DM, Christy AG, Norman AJ. Optimization of diamond anvil cell performance by finite element analysis. Meas Sci Technol. 1993;4:422. doi:10.1088/0957-0233/4/3/026
  • Han QG, Zhang Q, Li MZ, et al. An effective solution for the best set of beveling parameters of the cubic high-pressure tungsten carbide anvil. Chinese Phys Lett. 2012;29:13–16.
  • Ying Z, Xiping C, Guangai S, et al. Optimization of tungsten carbide opposite anvils used in the in situ high-pressure loading apparatus. Math Probl Eng. 2014;2014:607520. doi:10.1155/2014/607520
  • Kamenev KV, Tancharakorn S, Robertson N, et al. Long symmetric high-pressure cell for magnetic measurements in superconducting quantum interference device magnetometer. Rev Sci Instrum. 2006;77:073905. doi:10.1063/1.2221537
  • Debord R, Leguillon D, Syfosse G, et al. A finite element study of a high-pressure/high-temperature cell for simultaneous X-ray and ultrasonic measurement. High Press Res. 2003;23:451–463. doi:10.1080/08957950310001609421
  • Schilling F, Wunder B. Temperature distribution in piston-cylinder assemblies: numerical simulations and laboratory experiments. Eur J Mineral. 2004;16:7–14. doi:10.1127/0935-1221/2004/0016-0007
  • Hernlund J, Leinenweber K, Locke D, et al. A numerical model for steady-state temperature distributions in solid-medium high-pressure cell assemblies. Am Mineral. 2006;91:295–305. doi:10.2138/am.2006.1938
  • Riva AF, Rosa AD, Clavel C, et al. Heat distribution in Paris-Edinburgh press assemblies through finite element simulations. High Press Res [Internet]. 2018;38:303–324. Available from: http://simsrad.net.ocs.mq.edu.au/login?url = https://search.proquest.com/docview/2068964997?accountid = 12219.
  • Bromiley GD, Redfern SAT, Le Godec Y, et al. A portable high-pressure stress cell based on the V7 Paris-Edinburgh apparatus. High Press Res. 2009;29:306–316. doi:10.1080/08957950902747411
  • MatWeb [Internet]. Available from: https://www.matweb.com/
  • Instruments T. [Internet]. Available from: https://thermtest.com/thermal-resources/materials-database.
  • Klotz S. Techniques in high pressure neutron scattering. Boca Raton: CRC Press; 2013.
  • Elements A. [Internet] Available from: https://www.americanelements.com/fused-quartz-powder-14808-60-7
  • Kono Y, Park C, Kenney-Benson C, et al. Toward comprehensive studies of liquids at high pressures and high temperatures: combined structure, elastic wave velocity, and viscosity measurements in the Paris-Edinburgh cell. Phys Earth Planet Inter. 2014;228:269–280. doi:10.1016/j.pepi.2013.09.006
  • Takai S, Mandai T, Kawabata Y, et al. Diffusion coefficient measurements of La2/3−Li3TiO3 using neutron radiography. Solid State Ionics. 2005;176:2227–2233. doi:10.1016/j.ssi.2005.06.012
  • T Yener, ŞÇ Yener, R Mutlu. Convection coefficient estimation of still Air using an infrared thermometer and curve-fitting. J Eng Technol Appl Sci. 2019;4:95–103.
  • Bose K, Ganguly J. Quartz-coesite transition revisited; reversed experimental determination at 500-1200 degrees C and retrieved thermochemical properties. Am Mineral. 1995;80:231–238. doi:10.2138/am-1995-3-404
  • Sakai N, Stølen S. Heat capacity and thermodynamic properties of lanthanum(iii) chromate(iii): Lacro3, at temperatures from 298.15 k. evaluation of the thermal conductivity. J Chem Thermodyn. 1995;27:493–506. doi:10.1006/jcht.1995.0051
  • Simpson A, Stuckes AD. The thermal conductivity of highly oriented pyrolytic boron nitride. J Phys C Solid State Phys. 1971;4:1710–1718. doi:10.1088/0022-3719/4/13/021
  • Powell RW, Tye RP, Hickman MJ. The thermal conductivity of nickel. Int J Heat Mass Transf. 1965;8:679–688. doi:10.1016/0017-9310(65)90017-7
  • Leinenweber KD, Tyburczy JA, Sharp TG, et al. Cell assemblies for reproducible multi-anvil experiments (the COMPRES assemblies). Kurt Am Mineral. 2012;97:353–368. doi:10.2138/am.2012.3844.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.