Publication Cover
High Pressure Research
An International Journal
Volume 44, 2024 - Issue 1
62
Views
0
CrossRef citations to date
0
Altmetric
Articles

Raman spectroscopic characterization of the CO2-N2 gaseous system at 24–300°C and 2–40 MPa and applications

&
Pages 1-24 | Received 18 Jul 2023, Accepted 06 Nov 2023, Published online: 26 Dec 2023

References

  • Andersen T, Austrheim H, Burke EAJ, et al. N2 and CO2 in deep crustal fluids: evidence from the Caledonides of Norway. Chem Geol. 1993;108:113–132. doi:10.1016/0009-2541(93)90320-I
  • Frezzotti ML, Tecce F, Casagli A. Raman spectroscopy for fluid inclusion analysis. J Geochem Explor. 2012;112:1–20. doi:10.1016/j.gexplo.2011.09.009
  • Ferrero S, Angel RJ. Micropetrology: are inclusions grains of truth? J Petrol. 2018;59:1671–1700.
  • Roedder E, Bodnar RJ. Geologic pressure determinations from fluid inclusion staudies. Annu Rev Earth Planet Sci. 1980;8:263–301. doi:10.1146/annurev.ea.08.050180.001403
  • Cuney M, Coulibaly Y, Boiron MC. High-density early CO2 fluids in the ultrahigh-temperature granulites of Ihouhaouene (In Ouzzal, Algeria). Lithos. 2007;96:402–414. doi:10.1016/j.lithos.2006.11.009
  • Ohyama H, Tsunogae T, Santosh M. CO2-rich fluid inclusions in staurolite and associated minerals in a high-pressure ultrahigh-temperature granulite from the Gondwana suture in southern India. Lithos. 2008;101:177–190. doi:10.1016/j.lithos.2007.07.004
  • Yamamoto J, Kagi H, Kawakami Y, et al. Paleo-Moho depth determined from the pressure of CO2 fluid inclusions: Raman spectroscopic barometry of mantle- and crust-derived rocks. Earth Planet Sci Lett. 2007;253:369–377. doi:10.1016/j.epsl.2006.10.038
  • Fan H-R, Hu F-F, Wang K-Y, et al. Aqueous-carbonic-REE fluids in the giant Bayan Obo deposit, China: implications for REE mineralization. Miner Depos Res Meet Glob Chall. 2005:945–948. doi:10.1007/3-540-27946-6_241
  • Lai J, Chi G. CO2-rich fluid inclusions with chalcopyrite daughter mineral from the Fenghuangshan Cu-Fe-Au deposit, China: implications for metal transport in vapor. Miner Depos. 2007;42:293–299. doi:10.1007/s00126-006-0109-z
  • Klein EL, Fuzikawa K. Origin of the CO2-only fluid inclusions in the Palaeoproterozoic Carará vein-quartz gold deposit, Ipitinga Auriferous District, SE-Guiana Shield, Brazil: implications for orogenic gold mineralisation. Ore Geol Rev. 2010;37:31–40. doi:10.1016/j.oregeorev.2009.10.001
  • Moin B, Guillot C, Gibert F. Controls of the composition of nitrogen-rich fluids originating from reaction with graphite and ammonium-bearing biotite. Geochim Cosmochim Acta. 1994;58:5503–5523. doi:10.1016/0016-7037(94)90246-1
  • Andersen T, Burke EAJ, Neumann E-R. Nitrogen-rich fluid in the upper mantle: fluid inclusions in spinel dunite from Lanzarote, Canary Islands. Contrib to Mineral Petrol. 1995;120:20–28. doi:10.1007/BF00311005
  • Xiao Y, Hoefs J, Van Den Kerkhof AM, et al. Fluid evolution during HP and UHP metamorphism in Dabie Shan, China: constraints from mineral chemistry, fluid inclusions and stable isotopes. J Petrol. 2002;43:1505–1527. doi:10.1093/petrology/43.8.1505
  • Xiao Y, Hoefs J, Van Den Kerkhof AM, et al. Fluid history of UHP metamorphism in Dabie Shan, China: a fluid inclusion and oxygen isotope study on the coesite-bearing eclogite from Bixiling. Contrib to Mineral Petrol. 2000;139:1–16. doi:10.1007/s004100050570
  • Fu B, Touret JLR, Zheng YF. Fluid inclusions in coesite-bearing eclogites and jadeite quartzite at Shuanghe, Dabie Shan (China). J Metamorph Geol. 2001;19:531–547. doi:10.1046/j.0263-4929.2001.00327.x
  • Fu B, Zheng YF, Touret JLR. Petrological, isotopic and fluid inclusion studies of eclogites from Sujiahe, NW Dabie Shan (China). Chem Geol. 2002;187:107–128. doi:10.1016/S0009-2541(02)00014-1
  • Fu B, Touret JLR, Zheng YF, et al. Fluid inclusions in granulites, granulitized eclogites and garnet clinopyroxenites from the Dabie-Sulu terranes, eastern China. Lithos. 2003;70:293–319. doi:10.1016/S0024-4937(03)00103-8
  • Andersen T, Burke EAJ, Austrheim H. Nitrogen-bearing, aqueous fluid inclusions in some eclogites from the Western Gneiss Region of the Norwegian Caledonides. Contrib to Mineral Petrol. 1989;103:153–165. doi:10.1007/BF00378501
  • Klemd R, Horn E. High-density CO2-N2 inclusions in eclogite-facies metasediments of the Mfinchberg gneiss complex, SE Germany. Contrib to Mineral Petrol. 1992;111:409–419. doi:10.1007/BF00311200
  • Van Kranendonk MJ. Earth’s early atmosphere and surface environments: a review. Spec Pap Geol Soc Am. 2014;504:105–130.
  • Zhang X, Li LF, Du ZF, et al. Discovery of supercritical carbon dioxide in a hydrothermal system. Sci Bull. 2020;65:958–964. doi:10.1016/j.scib.2020.03.023
  • Halama R, Bebout G. Earth’s nitrogen and carbon cycles. Space Sci Rev. 2021;217:45.
  • Dasgupta R. Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev Mineral Geochem. 2013;75:183–229. doi:10.2138/rmg.2013.75.7
  • Mikhail S, Sverjensky DA. Nitrogen speciation in upper mantle fluids and the origin of Earth’s nitrogen-rich atmosphere. Nat Geosci. 2014;7:816–819. doi:10.1038/ngeo2271
  • Kelemen PB, Manning CE. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc Natl Acad Sci U S A. 2015;112:E3997–E4006. doi:10.1073/pnas.1507889112
  • Chen Q, Zhang Z, Wang Z, et al. In situ Raman spectroscopic study of nitrogen speciation in aqueous fluids under pressure. Chem Geol. 2019;506:51–57. doi:10.1016/j.chemgeo.2018.12.016
  • Roedder E. Fluid inclusions. In: Ribbe PH, editor. Rev mineral Vol. 48. Chantilly (VA): Mineralogical Society of America; 1984. p. 2659–2668.
  • Lu WJ, Chou I-M, Burruss RC, et al. In situ study of mass transfer in aqueous solutions under high pressures via Raman spectroscopy: a new method for the determination of diffusion coefficients of methane in water near hydrate formation conditions. Appl Spectrosc. 2006;60:122–129. doi:10.1366/000370206776023278
  • Seitz JC, Pasteris JD, Morgan VI GB. Quantitative analysis of mixed volatile fluids by raman microprobe spectroscopy: a cautionary note on spectral resolution and peak shape. Appl Spectrosc. 1993;47:816–820. doi:10.1366/0003702934067045
  • Wang CH, Wright RB. Raman studies of the effect of density of the fermi resonance in CO2. Chem Phys Lett. 1973;23:241–246. doi:10.1016/0009-2614(73)80261-1
  • Fall A, Tattitch B, Bodnar RJ. Combined microthermometric and Raman spectroscopic technique to determine the salinity of H2O-CO2-NaCl fluid inclusions based on clathrate melting. Geochim Cosmochim Acta. 2011;75:951–964. doi:10.1016/j.gca.2010.11.021
  • Wang X, Chou I-M, Hu W, et al. Raman spectroscopic measurements of CO2 density: experimental calibration with high-pressure optical cell (HPOC) and fused silica capillary capsule (FSCC) with application to fluid inclusion observations. Geochim Cosmochim Acta. 2011;75:4080–4093. doi:10.1016/j.gca.2011.04.028
  • Fang J, Chou I-M, Chen Y. Quantitative Raman spectroscopic study of the H2─CH4 gaseous system. J Raman Spectrosc. 2018;49:710–720. doi:10.1002/jrs.5337
  • Seitz JC, Pasteris JD, Chou I-M. Raman spectroscopic characterization of gas mixtures. I. Quantitative composition and pressure determination of CH4, N2, and their mixtures. Am J Sci. 1993;293:297–321. doi:10.2475/ajs.293.4.297
  • Seitz JC, Pasteris JD, Chou I-M. Raman spectroscopic characterization of gas mixtures. II. Quantitative composition and pressure determination of the CO2-CH4 system. Am J Sci. 1996;296:577–600. doi:10.2475/ajs.296.6.577
  • Le VH, Caumon MC, Tarantola A, et al. Quantitative measurements of composition, pressure, and density of microvolumes of CO2-N2 gas mixtures by Raman Spectroscopy. Anal Chem. 2019;91:14359–14367. doi:10.1021/acs.analchem.9b02803
  • Chou I-M, Burruss RC, Lu W. A new optical capillary cell for spectroscopic studies of geologic fluids at pressures up to 100 MPa. Adv High-Pressure Tech Geophys Appl Elsevier B.V. 2005. p. 475–485.
  • Chou I-M, Song Y, Burruss RC. A new method for synthesizing fluid inclusions in fused silica capillaries containing organic and inorganic material. Geochim Cosmochim Acta. 2008;72:5217–5231. doi:10.1016/j.gca.2008.07.030
  • Lu W, Chou I-M, Burruss RC, et al. A unified equation for calculating methane vapor pressures in the CH4-H2O system with measured Raman shifts. Geochim Cosmochim Acta. 2007;71:3969–3978. doi:10.1016/j.gca.2007.06.004
  • Jiang L, Xin Y, Chou I-M, et al. Raman spectroscopic measurements of ν1 band of hydrogen sulfide over a wide range of temperature and density in fused-silica optical cells. J Raman Spectrosc. 2018;49:343–350. doi:10.1002/jrs.5293
  • Chen Y, Chou I-M. Quantitative Raman spectroscopic determination of the composition, pressure, and density of CO2-CH4 gas mixtures. J Spectrosc. 2022;2022; doi:10.1155/2022/7238044
  • Hu M, Chou I-M, Wang R, et al. High solubility of gold in H2S-H2O±NaCl fluids at 100–200 MPa and 600–800 °C: a synthetic fluid inclusion study. Geochim Cosmochim Acta. 2022;330:116–130. doi:10.1016/j.gca.2022.03.006
  • Chou I-M, Wang A. Application of laser Raman micro-analyses to Earth and planetary materials. J Asian Earth Sci. 2017;145:309–333. doi:10.1016/j.jseaes.2017.06.032
  • Kim SB, Hammaker RM, Fateley WG. Calibrating Raman spectrometers using a neon lamp. Appl Spectrosc. 1986;40:412–415. doi:10.1366/0003702864509231
  • Lemmon EW, Huber ML, McLinden MO. Nist standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP, Version 9.1, Natl Std. Ref. Data Series (NIST NSRDS). Gaithersburg, MD: National Institute of Standards and Technology; 2013.
  • Chou I-M, Pasteris JD, Seitz JC. High-density volatiles in the system C-O-H-N for the calibration of a laser Raman microprobe. Geochemica Cosmochim Acta. 1990;54:535–543. doi:10.1016/0016-7037(90)90350-T
  • Chou I-M, Burruss RC. Raman spectroscopic method for the determination of solubility of methane in water at room temperature and elevated pressures. Eighth Bienn Pan–American Conf Res Fluid Inclusions Progr with Abstr. 2002:21–22.
  • Lamadrid HM, Steele-MacInnis M, Bodnar RJ. Relationship between Raman spectral features and fugacity in mixtures of gases. J Raman Spectrosc. 2018;49:581–593. doi:10.1002/jrs.5304
  • Hacura A. High pressure Raman study of Fermi resonance in CO2 in gaseous CO2-N2 mixtures. Phys Lett A. 1997;227:237–240. doi:10.1016/S0375-9601(97)00010-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.