Publication Cover
High Pressure Research
An International Journal
Volume 44, 2024 - Issue 1
72
Views
0
CrossRef citations to date
0
Altmetric
Articles

High-pressure synthesis of half-doped perovskites MnV0.5Nb0.5O3 and MnV0.5Ta0.5O3 with unusual A-site small Mn2+ cations

, , , &
Pages 25-37 | Received 27 Jul 2023, Accepted 09 Nov 2023, Published online: 21 Nov 2023

References

  • Michel VF, Esswein T, Spaldin NA. Interplay between ferroelectricity and metallicity in BaTiO3. J Mater Chem C Mater. 2021;9:8640–8649. doi:10.1039/D1TC01868J
  • Smith MB, Page K, Siegrist T, et al. Crystal Structure and the Paraelectric-to-Ferroelectric Phase Transition of Nanoscale BaTiO3. J Am Chem Soc. 2008;130:6955–6963. doi:10.1021/ja0758436
  • Cohen RE. Origin of ferroelectricity in perovskite oxides. Nature. 1992;358:136–138. doi:10.1038/358136a0
  • Xu R, Huang J, Barnard ES, et al. Strain-induced room-temperature ferroelectricity in SrTiO3 membranes. Nat Commun. 2020;11:3141. doi:10.1038/s41467-020-16912-3
  • Haeni JH, Irvin P, Chang W, et al. Room-temperature ferroelectricity in strained SrTiO3. Nature. 2004;430:758–761. doi:10.1038/nature02773
  • Bhide VG, Deshmukh KG, Hegde MS. Ferroelectric properties of PbTiO3. Physica. 1962;28:871–876. doi:10.1016/0031-8914(62)90075-7
  • Zhang S, Li F. High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective. J Appl Phys. 2012;111:031301.
  • Liang L, Li YL, Chen L-Q, et al. Thermodynamics and ferroelectric properties of KNbO3. J Appl Phys. 2009;106; doi:10.1063/1.3260242
  • Masuda I, Kakimoto K-I, Ohsato H. Ferroelectric property and crystal structure of KNbO3 based ceramics. J Electroceram. 2004;13:555–559. doi:10.1007/s10832-004-5157-0
  • Sleight AW, Gillson JL, Bierstedt PE. High-temperature superconductivity in the BaPb1-xBixO3 systems. Solid State Commun. 1975;17:27–28. doi:10.1016/0038-1098(75)90327-0
  • Yamada S, Abe N, Sagayama H, et al. Room-temperature low-field colossal magnetoresistance in Double-Perovskite Manganite. Phys Rev Lett. 2019;123:126602. doi:10.1103/PhysRevLett.123.126602
  • Baldini M, Muramatsu T, Sherafati M, et al. Origin of colossal magnetoresistance in LaMnO3 manganite. Proc Natl Acad Sci USA. 2015;112:10869–10872. doi:10.1073/pnas.1424866112
  • Zhang J, Ji W-J, Xu J, et al. Giant positive magnetoresistance in half-metallic double-perovskite Sr2CrWO6 thin films. Sci Adv. 2017;3,11.
  • Rao CNR. Charge, Spin, and Orbital Ordering in the Perovskite Manganates, Ln1-xAxMnO3 (Ln = Rare Earth, A = Ca or Sr). J Phys Chem B. 2000;104:5877–5889. doi:10.1021/jp0004866
  • Uchida M, Akahoshi D, Kumai R, et al. Charge/Orbital ordering structure in Ordered Perovskite Sm1/2Ba1/2MnO3. J Physical Soc Japan. 2002;71:2605–2608. doi:10.1143/JPSJ.71.2605
  • Ye X, Zhao J, Das H, et al. Observation of novel charge ordering and spin reorientation in perovskite oxide PbFeO3. Nat Commun. 2021;12:1917. doi:10.1038/s41467-021-22064-9
  • Cardoso JP, Delmonte D, Gilioli E, et al. Phase transitions in the Metastable Perovskite Multiferroics BiCrO3 and BiCr0.9Sc0.1O3 : a comparative study. Inorg Chem. 2020;59:8727–8735. doi:10.1021/acs.inorgchem.0c00338
  • Zhai L-J, Wang H-Y. The magnetic and multiferroic properties in BiMnO3. J Magn Magn Mater. 2017;426:188–194. doi:10.1016/j.jmmm.2016.11.065
  • Sugawara F, Iiida S, Syono Y, et al. Magnetic properties and crystal distortions of BiMnO3 and BiCrO3. J Physical Soc Japan. 1968;25:1553–1558. doi:10.1143/JPSJ.25.1553
  • Jia D-C, Xu J-H, Ke H, et al. Structure and multiferroic properties of BiFeO3 powders. J Eur Ceram Soc. 2009;29:3099–3103. doi:10.1016/j.jeurceramsoc.2009.04.023
  • Carranza-Celis D, Cardona-Rodríguez A, Narváez J, et al. Control of multiferroic properties in BiFeO3 nanoparticles. Sci Rep. 2019;9:3182. doi:10.1038/s41598-019-39517-3
  • Kim M, McNally GM, Kim H-H, et al. Superconductivity in (Ba,K)SbO3. Nat Mater. 2022;21:627–633. doi:10.1038/s41563-022-01203-7
  • He T, Huang Q, Ramirez AP, et al. Superconductivity in the non-oxide perovskite MgCNi3. Nature. 2001;411:54–56. doi:10.1038/35075014
  • Liu F, Sidhik S, Hoffbauer MA, et al. Highly efficient photoelectric effect in halide perovskites for regenerative electron sources. Nat Commun. 2021;12:673. doi:10.1038/s41467-021-20954-6
  • Cavichini AS, Orlando MT, Depianti JB, et al. Exotic magnetism and spin-orbit-assisted Mott insulating state in a 3d-5d double perovskite. Phys Rev B. 2018;97:054431. doi:10.1103/PhysRevB.97.054431
  • Liu T, Zhao X, Li J, et al. Enhanced control of self-doping in halide perovskites for improved thermoelectric performance. Nat Commun. 2019;10:5750. doi:10.1038/s41467-019-13773-3
  • Syono Y, Akimoto S-I, Endoh Y. High pressure synthesis of ilmenite and perovskite type MnVO3 and their magnetic properties. J Phys Chem Solids. 1971;32:243–249. doi:10.1016/S0022-3697(71)80026-4
  • Aimi A, Mori D, Hiraki K, et al. High-pressure synthesis of A-Site Ordered Double Perovskite CaMnTi2O6 and Ferroelectricity Driven by Coupling of A-Site Ordering and the Second-Order Jahn–Teller Effect. Chem Mater. 2014;26:2601–2608. doi:10.1021/cm500016z
  • Zhang S, Saito T, Mizumaki M, et al. Site-Selective Doping Effect in AMn3V4O12 (A = Na+, Ca2+, and La3+). J Am Chem Soc. 2013;135:6056–6060. doi:10.1021/ja308851f
  • Arévalo-López AM, McNally GM, Attfield JP. Large magnetization and frustration switching of Magnetoresistance in the Double-Perovskite Ferrimagnet Mn2FeReO6. Angew Chem, Int Ed. 2015;54:12074–12077. doi:10.1002/anie.201506540
  • Li M-R, Hodges JP, Retuerto M, et al. Mn2MnReO6: synthesis and magnetic structure determination of a New Transition-Metal-Only Double Perovskite Canted Antiferromagnet. Chem Mater. 2016;28:3148–3158. doi:10.1021/acs.chemmater.6b00755
  • Solana-Madruga E, Alharbi KN, Herz M, et al. Unconventional magnetism in the high pressure ‘all transition metal’ double perovskite Mn2NiReO6. Chem Commun. 2020;56:12574–12577. doi:10.1039/D0CC04756B
  • Li M-R, Stephens PW, Croft M, et al. Mn2(Fe0.8Mo0.2)MoO6: A Double Perovskite with Multiple Transition Metal Sublattice Magnetic Effects. Chem Mater. 2018;30:4508–4514. doi:10.1021/acs.chemmater.8b00250
  • Nishibori E, Takata M, Kato K, et al. The large Debye–Scherrer camera installed at SPring-8 BL02B2 for charge density studies. Nucl Instrum Methods Phys Res A. 2001;467–468:1045–1048.
  • Kawaguchi S, Takemoto M, Osaka K, et al. High-throughput powder diffraction measurement system consisting of multiple MYTHEN detectors at beamline BL02B2 of SPring-8. Rev Sci Instrum. 2017;88:085111. doi:10.1063/1.4999454
  • Momma K, Izumi F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr. 2008;41:653–658. doi:10.1107/S0021889808012016
  • Izumi F, Momma K. Three-dimensional visualization in powder diffraction. Solid State Phenomena. 2007;130:15–20. doi:10.4028/www.scientific.net/SSP.130.15
  • Brese NE. O’Keeffe M. Bond-valence parameters for solids. Acta Crystallogr B. 1991;47:192–197. doi:10.1107/S0108768190011041
  • Belik AA, Liu R, Yamaura K. Dielectric and Spin-Glass Magnetic Properties of the A-Site Columnar-Ordered Quadruple Perovskite Sm2CuMn(MnTi3)O12. Materials. 2022;15:8306. doi:10.3390/ma15238306
  • Dalal B, Kang X, Matsushita Y, et al. Inverse exchange bias effects and magnetoelectric coupling of the half-doped perovskite-type chromites Gd0.5Sr0.5CrO3 and Gd0.5Ca0.5CrO3. Phys Rev B. 2022;106:104425. doi:10.1103/PhysRevB.106.104425
  • Efros AL, Shklovskii BI. Coulomb gap and low temperature conductivity of disordered systems. J Phys C Solid State Phys. 1975;8:L49–L51. doi:10.1088/0022-3719/8/4/003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.