Publication Cover
High Pressure Research
An International Journal
Volume 44, 2024 - Issue 1
55
Views
0
CrossRef citations to date
0
Altmetric
Articles

Scintillator efficiency enhancement potential consequent to the pressure-dependent electronic, optical and elastic properties of CaI2: first-principles calculations

&
Pages 69-83 | Received 13 Oct 2023, Accepted 25 Jan 2024, Published online: 02 Feb 2024

References

  • Al'perovich VR, Komyak II, Lyskovich AB, et al. X-ray spectrometry with CaI2 crystal scintillators. Prib Tekh Eksp. 1970;4:223–224.
  • Hofstadter R, O'Dell EW, Schmidt CT. Cai2 and CaI2 (Eu) scintillation crystals. Rev Sci Instrum. 1964;35:246–247. doi:10.1063/1.1718803
  • Hofstadter R. (Sept 19, 1967). Europium activated calcium iodide scintillators. U.S. Patent 3, 342, 745. https://patents.google.com/patent/US3342745A/en.
  • McGregor DS. Materials for gamma-ray spectrometers: inorganic scintillators. Annu Rev Mater Res. 2018;48:245–277. doi:10.1146/annurev-matsci-070616-124247
  • Iida T, Kamada K, Yoshino M, et al. High-light-yield calcium iodide (CaI2) scintillator for astroparticle physics. Nucl Instrum Methods Phys Res Sect A. 2020;958:162629, doi:10.1016/j.nima.2019.162629
  • Boatner LA, Ramey JO, Kolopus JA, et al. Divalent europium doped and un-doped calcium iodide scintillators: scintillator characterization and single crystal growth. Nucl Instrum Methods Phys Res Sect A. 2015;786:23–31. doi:10.1016/j.nima.2015.02.031
  • Cherepy NJ, Payne SA, Asztalos SJ, et al. Scintillators with potential to supersede lanthanum bromide. IEEE Trans Nucl Sci. 2009;56:873–880. doi:10.1109/TNS.2009.2020165
  • Selling J, Birowosuto MD, Dorenbos P, et al. Europium-doped barium halide scintillators for x-ray and γ-ray detections. J Appl Phys. 2007;101:034901, doi:10.1063/1.2432306
  • Cherepy NJ, Hull G, Drobshoff AD, et al. Strontium and barium iodide high light yield scintillators. Appl Phys Lett. 2008;92:083508, doi:10.1063/1.2885728
  • Schwarz K, Blaha P, Madsen GKH. Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput Phys Commun. 2002;147:71–76. doi:10.1016/S0010-4655(02)00206-0
  • Blaha P, Schwarz K, Tran F, et al. WIEN2k: an APW + lo program for calculating the properties of solids. J Chem Phys. 2020;152:074101, doi:10.1063/1.5143061
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868, doi:10.1103/PhysRevLett.77.3865
  • Blum H. Crystal structure of magnesium iodide and calcium iodide. Z Phys Chem Abt B. 1933;22B:298–304, doi:10.1515/zpch-1933-2225
  • Kokalj A. XCrySDen—a new program for displaying crystalline structures and electron densities. J Mol Graph Model. 1999;17:176–179. doi:10.1016/S1093-3263(99)00028-5
  • Birch F. Finite elastic strain of cubic crystals. Phys Rev. 1947;71:809, doi:10.1103/PhysRev.71.809
  • Birch F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300°K. J Geophys Res: Solid Earth. 1978;83:1257–1268. doi:10.1029/JB083iB03p01257
  • Singh DJ. Structure and optical properties of high light output halide scintillators. Phys Rev B. 2010;82:155145, doi:10.1103/PhysRevB.82.155145
  • Lu F, Wang W, Luo X, et al. A class of monolayer metal halogenides MX2: electronic structures and band alignments. Appl Phys Lett. 2016;108:132104, doi:10.1063/1.4945366
  • Kumar P, Kumar A, Dhawan T, et al. First principle calculation of structural, electronic, optical, elastic and thermodynamic properties of group IIA metal iodides: structure-property correlation. J Phys Chem Solids. 2023;175:111195, doi:10.1016/j.jpcs.2022.111195
  • Blöchl PE, Jepsen O, Andersen OK. Improved tetrahedron method for brillouin-zone integrations. Phys Rev B. 1994;49:16223–16233, doi:10.1103/PhysRevB.49.16223
  • Ahuja R, Persson C, da Silva AF, et al. Optical properties of SiGe alloys. J Appl Phys. 2003;93:3832–3836, doi:10.1063/1.1555702
  • Penn DR. Wave-number-dependent dielectric function of semiconductors. Phys Rev. 1962;128:2093–2097, doi:10.1103/PhysRev.128.2093
  • Golesorkhtabar R, Pavone P, Spitaler J, et al. Elastic: a tool for calculating second-order elastic constants from first principles. Comput Phys Commun. 2013;184:1861–1873. doi:10.1016/j.cpc.2013.03.010
  • Mouhat F, Coudert F. Necessary and sufficient elastic stability conditions in various crystal systems. Phys Rev B. 2014;90:224104, doi:10.1103/PhysRevB.90.224104
  • Voigt W. Textbook of crystal physics. Leipzig and Berlin: B G Taubner; 1928.
  • Reuss A. Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals. Z Angew Math Mech. 1929;9:49–58. doi:10.1002/zamm.19290090104
  • Hill R. The elastic behaviour of a crystalline aggregate. Proc Phys Soc A. 1952;65:349–354. doi:10.1088/0370-1298/65/5/307
  • Pugh SF. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag. 1954;45:823–843. doi:10.1080/14786440808520496
  • Fadila B, Ameri M, Bensaid D, et al. Structural, magnetic, electronic and mechanical properties of full-Heusler alloys Co2YAl (Y = Fe, Ti): first principles calculations with different exchange-correlation potentials. J Magn Magn Mater. 2018;448:208–220. doi:10.1016/j.jmmm.2017.06.048
  • Schroers J, Johnson WL. Ductile bulk metallic glass. Phys Rev Lett. 2004;93:255506, doi:10.1103/PhysRevLett.93.255506
  • Yakobson GG, Akhmetova NE. Alkali metal fluorides in organic synthesis. Synthesis (Mass). 1983;1983:169–184. doi:10.1055/s-1983-30271
  • Santamaría-Pérez D, Kumar RS, Dos Santos-Garcia AJ, et al. High-pressure transition to the post-barite phase in BaCrO4 hashemite. Phys Rev B. 2012;86:094116, doi:10.1103/PhysRevB.86.094116
  • Haines JJ, Leger JM, Bocquillon G. Synthesis and design of superhard materials. Annu Rev Mater Res. 2001;31:1–23. doi:10.1146/annurev.matsci.31.1.1
  • Xing-Qiu C, Niu H, Li D, et al. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics. 2011;19:1275–1281. doi:10.1016/j.intermet.2011.03.026
  • Wu Z, Xiao-Jia C, Struzhkin VV, et al. Trends in elasticity and electronic structure of transition-metal nitrides and carbides from first principles. Phys Rev B. 2005;71:214103, doi:10.1103/PhysRevB.71.214103
  • Tian Y, Xu B, Zhao Z. Microscopic theory of hardness and design of novel superhard crystals. Int J Refract Met Hard Mater. 2012;33:93–106. doi:10.1016/j.ijrmhm.2012.02.021
  • Dorenbos P. Fundamental limitations in the performance of Ce3+-, Pr3+-, and Eu2+- activated scintillators. IEEE Trans Nucl Sci. 2010;57:1162–1167. doi:10.1109/TNS.2009.2031140
  • Rodnyi PA, Dorenbos P., van Eijk CWE. Energy loss in inorganic scintillators. Phys Status Solidi (b). 1995;187:15–29. doi:10.1002/pssb.2221870102
  • Yan Z, Gundiah G, Bizarri GA, et al. Eu2+-activated BaCl2, BaBr2 and BaI2 scintillators revisited. Nucl Instrum Methods Phys Res Sect A. 2014;735:83–87. doi:10.1016/j.nima.2013.09.021

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.