Publication Cover
High Pressure Research
An International Journal
Volume 44, 2024 - Issue 2
41
Views
0
CrossRef citations to date
0
Altmetric
Articles

Dissociation behavior of microbial nitrilase in temperature-pressure plane studied by using high pressure near-ultraviolet circular dichroism spectroscopy

&
Pages 127-142 | Received 13 Oct 2023, Accepted 08 Apr 2024, Published online: 20 Apr 2024

References

  • Silva JL, Weber G. Pressure stability of proteins. Annu Rev Phys Chem. 1993;44:89–113. doi:10.1146/annurev.pc.44.100193.000513
  • Randolph TW, Seefeldt M, Carpenter JF. High hydrostatic pressure as a tool to study protein aggregation and amyloidosis. Biochim Biophys Acta. 2002;1595:224–234. doi:10.1016/S0167-4838(01)00346-6
  • Chalikian TV, Breslauer KJ. On volume changes accompanying conformational transitions of biopolymers. Biopolymers. 1996;39:619–626. doi:10.1002/(SICI)1097-0282(199611)39:5<619::AID-BIP1>3.0.CO;2-Z
  • Chalikian TV. Volumetric properties of proteins. Annu Rev Biophys Biomol Struct. 2003;32:207–235. doi:10.1146/annurev.biophys.32.110601.141709
  • Monod J, Wyman J, Changeux JP. On the nature of allosteric transitions: a plausible model. J Mol Biol. 1965;12:88–118. doi:10.1016/S0022-2836(65)80285-6
  • Goodsell DS, Olson AJ. Structural symmetry and protein function. Annu Rev Biophys Biomol Struct. 2000;29:105–153. doi:10.1146/annurev.biophys.29.1.105
  • Pande C, Wishnia A. Pressure dependence of equilibria and kinetics of Escherichia coli ribosomal subunit association. J Biol Chem. 1986;261:6272–6278. doi:10.1016/S0021-9258(19)84559-3
  • Silva JL, Villas-Boas M, Bonafe CFS, et al. Anomalous pressure dissociation of large protein aggregates. J Biol Chem. 1989;264:15863–15868. doi:10.1016/S0021-9258(18)71557-3
  • Crisman RL, Randolph TW. Refolding of proteins from inclusion bodies is favored by a diminished hydrophobic effect at elevated pressure. Biotechnol Bioeng. 2009;102:483–492. doi:10.1002/bit.22082
  • King L, Weber G. Conformational drift of dissociated lactate dehydrogenases. Biochemistry. 1986;25:3632–3637. doi:10.1021/bi00360a023
  • Pin S, Royer CA, Gratton E, et al. Subunit interactions in hemoglobin probed by fluorescence and high-pressure techniques. Biochemistry. 1990;29:9194–9202. doi:10.1021/bi00491a013
  • Niraula TN, Konno T, Li H, et al. Pressure-dissociable reversible assembly of intrinsically denatured lysozyme is a precursor for amyloid fibrils. Proc Natl Acad Sci USA. 2004;101:4089–4093. doi:10.1073/pnas.0305798101
  • Fujisawa T, Kato M, Inoko Y. Structural characterization of lactate dehydrogenase dissociation under high pressure studied by synchrotron high-pressure small-angle x-ray scattering. Biochemistry. 1999;38:6411–6418. doi:10.1021/bi982558d
  • Popp D, Narita A, Oda T, et al. Molecular structure of the ParM polymer and the mechanism leading to its nucleotide-driven dynamic instability. EMBO J. 2008;27:570–579. doi:10.1038/sj.emboj.7601978
  • Gao M, Berghaus M, Mobitz S, et al. On the origin of microtubule’s high-pressure sensitivity. Biophys J. 2018;114:1080–1090. doi:10.1016/j.bpj.2018.01.021
  • Julius K, Al-Ayoubi SR, Paulus M, et al. The effects of osmolytes and crowding on the pressure-induced dissociation and inactivation of dimeric LADH. Phys Chem Chem Phys. 2018;20:7093–7104. doi:10.1039/C7CP08242H
  • Spinozzi F, Mariani P, Saturni L, et al. Met-myoglobin association in dilute solution during pressure-induced denaturation: an analysis at pH4.5 by high-pressure small-angle x-ray scattering. J Phys Chem B. 2007;111:3822–3830. doi:10.1021/jp063427m
  • Fujisawa T. High pressure small-angle a-ray scattering. Subcell Biochem. 2015;72:663–675. doi:10.1007/978-94-017-9918-8_30
  • Woody RW. Theory of circular dichroism of proteins. and Woody RW, Dunker AK. Aromatic and cystine side-chain circular dichroism in proteins. In: Fasman GD, editor. Circular dichroism and the conformational analysis of biomolecules. New York: Plenum Press; 1996. p. 25–67 and p. 109–157.
  • Rogers DM, Jasim SB, Dyer NT, et al. Electronic circular dichroism spectroscopy of proteins. Chem. 2019;5:2751–2774. doi:10.1016/j.chempr.2019.07.008
  • Hayashi R, Kakehi Y, Kato M, et al. Circular dichroism under high pressure. Progr Biotechnol. 2002;19:583–590. doi:10.1016/S0921-0423(02)80157-5
  • Lerch MT, Horwitz J, McCoy J, et al. Circular dichroism and site-directed spin-labeling reveal structural and dynamical features of high-pressure states of myoglobin. Proc Natl Acad Sci USA. 2013;110:E4714–E4722. doi:10.1073/pnas.1320124110
  • Nagata Y, Takeda R, Suginome M. High-pressure circular dichroism spectroscopy up to 400 MPa using polycrystalline yttrium aluminum garnet (YAG) as pressure-resistant optical windows. RSC Adv. 2016;6:109726–109729. doi:10.1039/C6RA23736C
  • Thuku RN, Brady D, Benedik MJ, et al. Microbial nitrilases: versatile, spiral forming, industrial enzymes. J Appl Microbiol. 2009;106:703–727. doi:10.1111/j.1365-2672.2008.03941.x
  • Woodward JD, Trompetter I, Sewell TB, et al. Substrate specificity of plant nitrilase complexes is affected by their helical twist. Commun Biol. 2018;1:186, doi:10.1038/s42003-018-0186-4
  • Mulelu AE, Kirykowicz AM, Woodward JD. Cryo-EM and directed evolution reveal how Arabidopsis nitrilase specificity is influenced by its quaternary structure. Commun Biol. 2019;2:260, doi:10.1038/s42003-019-0505-4
  • Nagasawa T, Wieser M, Nakamura T, et al. Nitrilase of Rhodococcus rhodochrous J1. Conversion into the active form by subunit association. Eur J Biochem. 2000;267:138–144. doi:10.1046/j.1432-1327.2000.00983.x
  • Yoshida T, Mitsukura K, Mizutani T, et al. Enantioselective synthesis of (S)-2-cyano-2-methylpentanoic acid by nitrilase. Biotechnol Lett. 2013;35:685–688. doi:10.1007/s10529-012-1131-0
  • Camp CH. pyMCR: a python library for multivariate curve resolution analysis with alternating regression. J Res Natl Inst Stan. 2019;124:124018, doi:10.6028/jres.124.018
  • Yang JT, Wu CS, Martinez HM. Calculation of protein conformation from circular dichroism. Methods Enzymol. 1986;130:208–269. doi:10.1016/0076-6879(86)30013-2
  • Thuku RN, Weber BW, Varsani A, et al. Post-translational cleavage of recombinantly expressed nitrilase from Rhodococcus rhodochrous J1 yields a stable, active helical form. FEBS J. 2007;274:2099–2108. doi:10.1111/j.1742-4658.2007.05752.x
  • de Juan A, Tauler R. Chemometrics applied to unravel multicomponent processes and mixtures. Revisiting latest trends in multivariate resolution. Anal Chim Acta. 2003;500:195–210. doi:10.1016/S0003-2670(03)00724-4
  • de Juan A, Tauler R. Multivariate curve resolution: 50 years addressing the mixture analysis problem – a review. Anal Chim Acta. 2021;1145:59–78. doi:10.1016/j.aca.2020.10.051
  • Mendieta J, Diaz-Cruz MS, Esteban M, et al. Multivariate curve resolution: a possible tool in the detection of intermediate structures in protein folding. Biophys J. 1998;74:2876–2888. doi:10.1016/S0006-3495(98)77994-9
  • Cutler P, Gemperline PJ, de Juan A. Experimental monitoring and data analysis tools for protein folding. Study of steady-state evolution and modeling of kinetic transients by multitechnique and multiexperiment data fusion. Anal Chim Acta. 2009;632:52–62. doi:10.1016/j.aca.2008.10.052
  • Tauler R. Multivariate curve resolution applied to second order data. Chemom Intell Lab Syst. 1995;30:133–146. doi:10.1016/0169-7439(95)00047-X
  • Herranz-Trillo F, Groenning M, van Maarschalkerweerd A, et al. Structural analysis of multi-component amyloid systems by chemometrics SAXS data decomposition. Structure. 2017;25:5–15. doi:10.1016/j.str.2016.10.013
  • Kojima Y, Muto S, Tatsumi K, et al. Degradation analysis of a Ni-based layered positive electrode active material cycled at elevated temperatures studied by scanning transmission electron microscopy and electron energy-loss spectroscopy. J Power Sources. 2011;196:7721–7727. doi:10.1016/j.jpowsour.2011.05.017
  • Hawley SA. Reversible pressure-temperature denaturation of chymotrypsinogen. Biochemistry. 1971;10:2436–2442. doi:10.1021/bi00789a002
  • Oosawa F, Asakura S. Thermodynamics of the polymerization of protein. New York: Academic Press; 1975.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.