Publication Cover
High Pressure Research
An International Journal
Volume 44, 2024 - Issue 2
70
Views
0
CrossRef citations to date
0
Altmetric
Articles

Pressure and non-ideal axial ratio effects on thermodynamic properties of hexagonal close-packed Mg and Zn metals

, , &
Pages 143-158 | Received 26 Mar 2024, Accepted 10 Apr 2024, Published online: 23 Apr 2024

References

  • Liu W, Zhou B, Wu G, et al. High temperature mechanical behavior of low-pressure sand-cast Mg–Gd–Y–Zr magnesium alloy. J Magn Alloys. 2019;7:597–604. doi:10.1016/j.jma.2019.07.006
  • Rai N, Samantaray BK, Rajulapati KV, et al. Theoretical and experimental studies on thermal stability of nanocrystalline Mg–Mo alloy. Materialia. 2020;14:100933. doi:10.1016/j.mtla.2020.100933
  • Zhou Y, Gui Q, Yu W, et al. Interfacial diffusion printing: an efficient manufacturing technique for artificial tubular grafts. ACS Biomater Sci Eng. 2019;5:6311–6318. doi:10.1021/acsbiomaterials.9b01293
  • Li S, Yang X, Hou J, et al. A review on thermal conductivity of magnesium and its alloys. J Magn Alloys. 2020;8:78–90. doi:10.1016/j.jma.2019.08.002
  • Bai J, Yang Y, Wen C, et al. Applications of magnesium alloys for aerospace: a review. J Magn Alloys. 2023;11:3609–3619. doi:10.1016/j.jma.2023.09.015
  • Yin S, Duan W, Liu W, et al. Influence of specific second phases on corrosion behaviors of Mg–Zn–Gd–Zr alloys. Corros Sci. 2020;166:108419. doi:10.1016/j.corsci.2019.108419
  • Baigonakova G, Marchenko E, Zhukov I, et al. Structure, cytocompatibility and biodegradation of nanocrystalline coated Mg–Ca–Zn alloys. Vacuum. 2023;207:111630. doi:10.1016/j.vacuum.2022.111630
  • Savaedi Z, Motallebi R, Mirzadeh H, et al. Superplasticity of fine-grained magnesium alloys for biomedical applications: a comprehensive review. Curr Opin Solid State Mater Sci. 2023;27:101058. doi:10.1016/j.cossms.2023.101058
  • Chen Y, Zuo E, Jiang G, et al. Insights into the structures and elastic properties of Mg–Sn compounds with superconductivity. Vacuum. 2023;215:112265. doi:10.1016/j.vacuum.2023.112265
  • Javed MS, Asim S, Najam T, et al. Recent progress in flexible Zn-ion hybrid supercapacitors: fundamentals, fabrication designs, and applications. Carbon Energy. 2023;5:e271. doi:10.1002/cey2.271
  • Zhang Y, Zhang Y, Feng Y, et al. Enhancing electrochemical performance in aqueous rechargeable Zn-ion batteries through bimetallic oxides of manganese and cobalt as electrode. Vacuum. 2023;215:112285. doi:10.1016/j.vacuum.2023.112285
  • Li Y, Wang J, Xu R. The microstructure and mechanical properties of nanocrystalline Mg–Zn–Y alloy achieved by a combination of aging and high pressure torsion. Vacuum. 2020;178:109396. doi:10.1016/j.vacuum.2020.109396
  • Yang J-W, Wang X-F. Insights into crystal structure, elasticity, lattice dynamics, and thermodynamics of ternary magnesium alloy MgZn2Ce. Vacuum. 2023;209:111755. doi:10.1016/j.vacuum.2022.111755
  • Arafin S, Singh RN, George AK. Melting of metals under pressure. Phys B. 2013;419:40–44. doi:10.1016/j.physb.2013.03.013
  • Hung VV, Masuda-Jindo K. Application of statistical moment method to thermodynamic properties of metals at high pressures. J Phys Soc Jpn. 2000;69:2067–2075. doi:10.1143/JPSJ.69.2067
  • Errandonea D, MacLeod SG, Ruiz-Fuertes J, et al. High-pressure/high-temperature phase diagram of zinc. J Phys: Condens Matter. 2018;30:295402. doi:10.1088/1361-648X/aacac0
  • Shuker P, Melchior A, Assor Y, et al. IR pyrometry in diamond anvil cell above 400K. Rev Sci Instrum. 2008;79:073908. doi:10.1063/1.2953307
  • Errandonea D, Meng Y, Häusermann D, et al. Study of the phase transformations and equation of state of magnesium by synchrotron x-ray diffraction. J Phys: Condens Matter. 2003;15:1277. doi:10.1088/0953-8984/15/8/312
  • Sunil K, Ashwini D, Sharma VS. Pressure dependence of the Grüneisen parameter and melting temperature of some metals. Int J Mod Phys B. 2021;35:2150255. doi:10.1142/S0217979221502556
  • Courac A, Le Godec Y, Solozhenko VL, et al. Thermoelastic equation of state and melting of Mg metal at high pressure and high temperature. J Appl Phys. 2020;127:055903. doi:10.1063/1.5135649
  • Errandonea D. The melting curve of ten metals up to 12 GPa and 1600 K. J Appl Phys. 2010;108:033517. doi:10.1063/1.3468149
  • Errandonea D, Boehler R, Ross M. Melting of the alkaline-earth metals to 80 GPa. Phys Rev B. 2001;65:012108. doi:10.1103/PhysRevB.65.012108
  • Stinton GW, MacLeod SG, Cynn H, et al. Equation of state and high-pressure/high-temperature phase diagram of magnesium. Phys Rev B. 2014;90:134105. doi:10.1103/PhysRevB.90.134105
  • Schulte O, Holzapfel WB. Effect of pressure on the atomic volume of Ga and Tl up to 68 GPa. Phys Rev B. 1997;55:8122–8128. doi:10.1103/PhysRevB.55.8122
  • Hung NV, Tien TS, Duc NB, et al. High-order expanded XAFS Debye-Waller factors of HCP crystals based on classical anharmonic correlated Einstein model. Mod Phys Lett B. 2014;28:1450174. doi:10.1142/S0217984914501747
  • Hung NV, Thang CS, Duc NB, et al. Temperature dependence of theoretical and experimental Debye–Waller factors, thermal expansion and XAFS of metallic Zinc. Phys B. 2017;521:198–203. doi:10.1016/j.physb.2017.06.027
  • Tien TS. Effect of the non-ideal axial ratio c/a on anharmonic EXAFS oscillation of h.c.p. crystals. J Synchrotron Radiat. 2021;28:1544–1557. doi:10.1107/S1600577521007256
  • Hung NV, Trung NB, Kirchner B. Anharmonic correlated Debye model Debye–Waller factors. Phys B. 2010;405:2519–2525. doi:10.1016/j.physb.2010.03.013
  • Hong NT, Hieu HK, Duc NB, et al. Anharmonic correlated Debye model for thermal disorder in iron-rich B2-FeAl intermetallic alloy. Vacuum. 2019;163:210–215. doi:10.1016/j.vacuum.2019.02.023
  • Duc NB, Tho VQ, Hung NV, et al. Anharmonic effects of gold in extended X-ray absorption fine structure. Vacuum. 2017;145:272–277. doi:10.1016/j.vacuum.2017.09.009
  • Duc NB, Tho VQ, Tien TS, et al. Pressure and temperature dependence of EXAFS Debye–Waller factor of platinum. Radiat Phys Chem. 2018;149:61–64. doi:10.1016/j.radphyschem.2018.03.017
  • Hanh PTM, Hieu HK, Hong NT. Temperature measurement by extended X-ray absorption fine structure: a new theoretical development. Vacuum. 2021;189:110274. doi:10.1016/j.vacuum.2021.110274
  • Grüneisen E. Theorie des festen Zustandes einatomiger Elemente. Ann Phys. 1912;344:257–306. doi:10.1002/andp.19123441202
  • Duc NB, Hieu HK, Hanh PTM, et al. Investigation of melting point, Debye frequency and temperature of iron at high pressure. European Phys J B. 2020;93:115. doi:10.1140/epjb/e2020-10083-8
  • Hieu HK, Hai TT, Hong NT, et al. Pressure dependence of melting temperature and shear modulus of hcp-iron. High Press Res. 2017;37:267–277. doi:10.1080/08957959.2017.1318131
  • Graf MJ, Greeff CW, Boettger JC. High-pressure Debye–Waller and Grüneisen parameters of gold and copper. AIP Conf Proc. 2004;706:65–68. doi:10.1063/1.1780185
  • Hieu HK. Melting of solids under high pressure. Vacuum. 2014;109:184–186. doi:10.1016/j.vacuum.2014.07.010
  • Burakovsky L, Preston DL. Analytic model of the Grüneisen parameter all densities. J Phys Chem Solids. 2004: 1581–1587. doi:10.1016/j.jpcs.2003.10.076
  • Nghia NV, Hieu HK. The melting curves of tin, uranium, cadmium, thallium and indium metals under pressure. Chem Phys. 2022;553:111389. doi:10.1016/j.chemphys.2021.111389
  • Girifalco LA, Weizer VG. Application of the Morse potential function to cubic metals. Phys Rev. 1959;114:687–690. doi:10.1103/PhysRev.114.687
  • Burakovsky L, Preston DL, Silbar RR. Analysis of dislocation mechanism for melting of elements: Pressure dependence. J Appl Phys. 2000;88:6294–6301. doi:10.1063/1.1323535
  • Lindemann FA. The calculation of molecular vibration frequencies. Phys Z. 1910;11:609–612.
  • Hieu HK. Volume and pressure-dependent thermodynamic properties of sodium. Vacuum. 2015;120:13–16. doi:10.1016/j.vacuum.2015.06.010
  • Hieu HK. Systematic prediction of high-pressure melting curves of transition metals. J Appl Phys. 2014;116:163505. doi:10.1063/1.4899511
  • Hieu HK, Ha NN. High pressure melting curves of silver, gold and copper. AIP Adv. 2013;3:112125. doi:10.1063/1.4834437
  • Vinet P, Ferrante J, Rose JH, et al. Compressibility of solids. J Geophys Res Solid Earth. 1987;92:9319–9325. doi:10.1029/JB092iB09p09319
  • Yu R, Zhai P, Li G, et al. Molecular dynamics simulation of the mechanical properties of single-crystal bulk Mg 2Si. J Electron Mater. 2012;41:1465–1469. doi:10.1007/s11664-012-1916-x
  • Mehta S, Price GD, Alfè D. Ab initio thermodynamics and phase diagram of solid magnesium: a comparison of the LDA and GGA. J Chem Phys. 2006;125:194507. doi:10.1063/1.2374892
  • Liu G, Wang J, Shen Y. Density functional theory study of {101n} twin boundaries of Zn under high pressure. Comput Mater Sci. 2018;151:106–116. doi:10.1016/j.commatsci.2018.04.046
  • Olijnyk H, Holzapfel WB. High-pressure structural phase transition in Mg. Phys Rev B. 1985;31:4682–4683. doi:10.1103/PhysRevB.31.4682
  • Kenichi T. Zn under pressure: a singularity in the hcp structure at c/a=√3. Phys Rev Lett. 1995;75:1807–1810. doi:10.1103/PhysRevLett.75.1807
  • Gschneidner KA. In: F Seitz, D Turnbull, editor. Solid state physics: advances in research and applications, vol. 16. New York: Academic Press Inc.; 1964.
  • Skelton EF, Katz JL. Examination of the thermal variation of the mean square atomic displacements in zinc and evaluation of the associated Debye temperature. Phys Rev. 1968;171:801–808. doi:10.1103/PhysRev.171.801
  • Clendenen GL, Drickamer HG. Effect of pressure on the volume and lattice parameters of magnesium. Phys Rev. 1964;135:A1643–A1645. doi:10.1103/PhysRev.135.A1643
  • Lynch RW, Drickamer HG. The effect of pressure on the resistance and lattice parameters of cadmium and zinc. J Phys Chem Solids. 1965;26:63–68. doi:10.1016/0022-3697(65)90073-9
  • Moriarty JA, Althoff JD. First-principles temperature-pressure phase diagram of magnesium. Phys Rev B. 1995;51:5609–5616. doi:10.1103/PhysRevB.51.5609

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.