Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 12, 2000 - Issue 8
91
Views
18
CrossRef citations to date
0
Altmetric
Research Article

SETTING SAFE ACUTE EXPOSURE LIMITS FOR HALON REPLACEMENT CHEMICALS USING PHYSIOLOGICALLY BASED PHARMACOKINETIC MODELING

Pages 751-763 | Published online: 01 Oct 2008

REFERENCES

  • Bischoff, K. B., and Brown, R. G. 1966. Drug distribution in mammals. Chem. Eng. Prog. Symp. Ser. 62(66):33–45.
  • Bois, F. Y., and Paxman, D. G. 1992. An analysis of exposure rate effects for benzene using a physio-logically based pharmacokinetic model. Regul. Toxicol. Pharmacol. 15:122–136.
  • Bois, F. Y., Woodruff, T. J., and Spear, R. C. 1991. Comparison of three physiologically based phar-macokinetic models of benzene disposition. Toxicol. Appl. Pharmaco1.110:79–88.
  • Brown, R. P., Delp, M. D., Lindstedt, S. L., Rhomberg, L. R., and Beliles, R. P. 1997. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol. Ind. Health 13: 407–484.
  • Buhler, H. U., DaPrada, M., Haefely, W., and Picotti, G. B. 1978. Plasma adrenaline, noradrenaline and dopamine in man and different animal species. J. PhysioL 276:311–320.
  • Carriere, S., Demassieux, S., Cardinal, J., and LeGrimellec, C. 1983. Release of epinephrine during carotid artery occlusion following vagotomy in dogs. Can.]. Physiol. Pharmacol. 61:495-501. Clewell, H. J., and Jarnot, B. M. 1994. Incorporation of pharmacokinetics in noncancer risk assess- ment: Example with chloropentafluorobenzene. Risk Anal. 14:265–276.
  • Creech, J. R., Black, R. K., Garrity, B. L., Abbas, R., Dong, L., Williams, R. J., McDougal, J. N., Vinegar, A., and Jepson, G. W. 1995a. Inhalation Uptake and Metabolism of lodohalogenated Compounds, CF3I, C6F131, and C3F7I. Tech. Rep. AUOE-TR-1995-0089, U.S. Air Force, Armstrong Laboratory, Occupational and Environmental Health Directorate, Toxicology Division, Wright-Patterson AFB, OH.
  • Creech, J. R., Black, R. K., Neurath, S. K., Caracci, M. C., Williams, R. J., Jepson, G. W., and Vinegar, A. 1995b. Inhalation Uptake and Metabolism of Halon 1301 Replacement Candidates, HFC-227ea, HFC-125, and FC-218. Tech. Rep. AUOE-TR-1995-0022. U.S. Air Force, Armstrong Laboratory, Occupational and Environmental Health Directorate, Toxicology Division, Wright-Patterson AFB, OH.
  • Cronin, W. J. IV, Oswald, E. J., Shelley, M. L., Fisher, J. W., and Flemming, C. D. 1995. A trichloroethylene risk assessment using a Monte Carlo analysis of parameter uncertainty in con-junction with physiologically-based pharmacokinetic modeling. Risk Anal. 15: 555–565.
  • Davis, N. R., and Mapleson, W. W. 1981. Structure and quantificaticn of a physiological model of the distribution of injected agents and inhaled anesthetics. Br.]. Anaesth. 53:399–405.
  • Dodd, D. E., and Vinegar, A. 1998. Cardiac sensitization testing of the halon replacement candidates trifluoroiodomethane (CF3I) and 1,1,2,2,3,3,3-heptafluoro-1-iodopropane (C3F71). Drug Chem. Toxicol. 21:137–149.
  • Eger, E. I. 1987. Partition coefficients of 1-653 in human blood, saline, and olive oil. Anesth. Analg. 66:971–973.
  • Farrar, D., Allen, B., Crump, K., and Shipp, A. 1989. Evaluation of uncertainty in input parameters to pharmacokinetic models and the resulting uncertainty in output. Toxicol. Lett. 49:371-385. Hetrick, D. M., Jarabek, A. M., and Travis, C. C. 1991. Sensitivity analysis for physiologically based pharmacokinetic models. Pharmacokinet Biopharmacol. 19:1–20.
  • Huntingdon Life Sciences Ltd. 1998. HFC 236fa, HFC 227ea, HFC 125 and CF3I. An Inhalation Study to Investigate the Blood Levels of Inhaled Halocarbons in the Beagle Dog. Prepared by Huntingdon Life Sciences Ltd, England. Huntingdon Report IFP 001/984370. Submitted under subcontract to ICF Incorporated, Washington DC, under U.S. EPA contract 68-D5-0147, work assignment 2–09.
  • Keller-Wood, M. E., Wade, C. E., Shinsako, J., Keil, L. C., Van Loon, G. R., and Dallmann, M. F. 1982. Insulin-induced hypoglycemia in conscious dogs: Effect of maintaining carotid arterial glu-cose levels on the adrenocorticotropin, epinephrine and vasopressin responses. Endocrinology 112:624–632.
  • Leggett, R. W., and Williams, L. R. 1995. A proposed blood circulation model for reference man. Health Phys. 69:187–201.
  • Lerman, J., Gregory, G. A., Willis, M. M., Schmidt, B. I., and Eger, E. I. 1985. Age and the solubility of volatile anesthetics in ovine tissues. Anesth. Analg. 64:1097–1100.
  • Lerman, J., Gregory, G. A., Willis, M. M., Schmidt-Bantel, B. I., and Eger, E. I. 1986. Effect of age on the solubility of volatile anesthetics in human tissues. Anesth. Analg. 65: 307–311.
  • Mullin, L. S., Reinhardt, C. F., and Hemingway, R. E. 1979. Cardiac arrhythmias and blood levels associated with inhalation of Halon 1301. Am. Ind. Hyg. Assoc. J. 40:653–658.
  • Portier, C. J., and Kaplan, N. L. 1989. Variability of safe dose estimates when using complicated models of the carcinogenic process. Fundam. Appl. ToxicoL 13:533–544.
  • Reinhardt, C. F., Azar, A., Maxfield, M. E., Smith, P. E., Jr., and Mullin, L. S. 1971. Cardiac arrhythmias and aerosol "sniffing." Arch. Environ. Health 22:265–279.
  • Simon, T. W. 1997. Combining physiologically based pharmacokinetic modeling with Monte Carlo simulation to derive an acute inhalation guidance value for trichloroethylene. ReguL Toxicol. Pharmacol. 26:257–270.
  • Spear, R. C., Bois, F. Y., Woodruff, T., Auslander, D., Parker, J., and Selvin, S. 1991. Modeling ben-zene pharmacokinetics across three sets of animal data: Parametric sensitivity and risk implica-tions Risk Anal. 11:641–654.
  • Thomas, R. S., Bigelow, P. L., Keefe, T. J., and Yang, R. S. H. 1996a. Variability in biological expo-sure indices using physiologically based pharmacokinetic modeling and Monte Carlo simulation. Am. Ind. Hyg. Assoc. J. 57:23–32.
  • Thomas, R. S., Lytle, W. E., Keefe, T. J., Constan, A. A., and Yang, R. S. H. 1996b. Incorporating Monte Carlo simulation into physiologically based pharmacokinetic models using advanced con-tinuous simulation language (ACSL): A computational method. Fundam. Appl. ToxicoL 31:19–28.
  • U. S. Environmental Protection Agency. 1994. SNAP Technical Background Document: Risk Screen on the Use of Substitutes for Class I Ozone-Depleting Substances, Fire Suppression and Explosion Protection (Halon Substitutes). U.S. Environmental Protection Agency, Office of Air and Radiation, Stratospheric Protection Division, Washington, DC.
  • Vinegar, A., Buttler, G. W., Caracci, M. C., and McCafferty, J. D. 1995. Gas Uptake Kinetics of 1,1,1,2,2,2-Hexafluoropropaie (HFC-236fa) and Identification of Its Potential Metabolites. Tech. Rep. AL/OE-TR-1995-0177, U.S. Air Force, Armstrong Laboratory, Occupational and Environ-mental Health Directorate, Toxicology Division, Wright-Patterson AFB, OH.
  • Vinegar, A., and Jepson, G. W. 1996. Cardiac sensitization thresholds of halon replacement chem-icals predicted in humans by physiologically-based pharmacokinetic modeling. Risk Anal. 16: 571–579.
  • Vinegar, A., Jepson, G. W., and Overton, J. H. 1998. PBPK modeling of short-term (0 to 5 min) human inhalation exposures to halogenated hydrocarbons. InhaL Toxicol 10:411–429.
  • Williams, R. J., Vinegar, A., McDougal, J. N., Jarabek, A. M., and Fisher, J. W. 1996. Rat to human extrapolation of HCFC-123 kinetics deduced from halothane kinetics: A corollary approach to physiologically based pharmacokinetic modeling. Fundam. Appl. Toxicol. 30:55–66.
  • Yang, R. S. H., El-Masri, H. A., Thomas, R. S., and Constan, A. A. 1995. The use of physiologically-based pharmacokinetic/pharmacodynamic dosimetry models for chemical mixtures. ToxicoL Lett. 82/83:497–504.
  • Young, M. A., Hintze, T. H., and Vatner, S. F. 1985. Correlation between cardiac performance and plasma catecholamine levels in conscious dogs. Am.]. PhysioL 248:H82—H88.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.