Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 18, 2006 - Issue 5
66
Views
13
CrossRef citations to date
0
Altmetric
Research Article

An Internal Dose Model of Incapacitation and Lethality Risk from Inhalation of Fire Gases

, &
Pages 347-364 | Received 29 Sep 2005, Accepted 06 Nov 2005, Published online: 06 Oct 2008

REFERENCES

  • Alarie Y. Proceedings of the inhalation toxicology and technology symposium. Ann Arbor Science, Kalamazoo, MI 1980
  • Armstrong G. C. Toxicity of hydrocyanic acid gas to mice by inhalation for a 10-min exposure. Edgewood Arsensal Medical Research Division, Edgewood, MD 1933
  • Armstrong G. C., Koontz A. R., Witherspoon M. G. The toxicity of hydrocyanic acid gas on dogs, monkeys, mice, guinea pigs, and rabbits. Edgewood Arsensal Medical Research Division, Edgewood, MD 1923, EAMRD20
  • Ballantyne B. Comparative acute toxicity of hydrogen cyanide and its salts. Fourth Annual Chemical Defense Bioscience Review, U.S. Army Medical Research Institute of Chemical Defense, , MD 1984
  • Barcroft J. The toxicity of atmosphere containing hydrocyanic acid gas. J. Hyg 1931; 31: 1–34, [CSA]
  • Bauer M. A., Utell M. J., Morrow P. E., Speers D. M., Gibb F. R. Inhalation of 0.30 ppm nitrogen dioxide potentiates exercise-induced bronchospasm in asthmatics. Am. Rev. Respir. Dis. 1986; 134: 1203, [PUBMED], [INFOTRIEVE], [CSA]
  • Benignus V. A. Neurotoxicity of environmental gases. Handbook of neurotoxicology, L. W. Chang, R. S. Dyer. Marcel Dekker, New York 1995; 1005–1048
  • Beyer W. H. CRC standard mathematical tables. CRC Press, Boca Raton, FL 1984
  • Carson T. R., Rosenholtz M. S., Wilinski F. T., Weeks M. H. The responses of animals inhaling nitrogen dioxide for single, short-term exposures. Am. Ind. Hyg. Assoc. J. 1962; 23: 457–462, [PUBMED], [INFOTRIEVE], [CSA]
  • Chaturvedi A. K., Endecott B. R., Ritter R. M., Sanders D. C. Variations in time-to-incapacitation and blood cyanide values for rats exposed to two hydrogen cyanide gas concentrations. FAA Civil Aeromedical Institute, Oklahoma City, OK 1993, DOT/FAA/AM-93/8
  • Coon J. M., Glass H., Sonkin L. S., Lushbaugh C. C. Hydrocyanic acid toxicity studies. University of Chicago Toxicology Laboratory, Chicago 1943, Report No. 14, OSRD 1432
  • Crane C. R., Sanders D. C., Endecott B. R., Abbott J. K. Inhalation toxicology: IV. Times to incapacitation and death for rats exposed continuously to atmospheric hydrogen chloride gas. FAA Civil Aeromedical Institute, Oklahoma City, OK 1985, FAA-AM-85-4
  • Crane C. R., Sanders D. C., Endecott B. R., Abbott J. K. Inhalation toxicology: VII. Times to incapacitation and death for rats exposed continuously to atmospheric acrolein vapor. FAA Civil Aeromedical Institute, Oklahoma City, OK 1986, DOT/FAA/AM86/5
  • Crane C. R., Sanders D. C., Endecott B. R. Inhalation toxicology: IX. Times-to-incapacitation for rats exposed to carbon monoxide alone, to hydrogen cyanide alone, and to mixtures of carbon monoxide and hydrogen cyanide. FAA Civil Aeromedical Institute, Oklahoma City, OK 1989, DOT/FAA/AM-89/4
  • Crane C. R., Sanders D. C., Endecott B. R. Inhalation toxicology: X. Times to incapacitation for rats exposed continuously to carbon monoxide, acrolein, and to carbon monoxide–acrolein mixtures. FAA Civil Aeromedical Institute, Oklahoma City, OK 1990, DOT/FAA/AM-90/15
  • Darmer K. I., Jr., Kinkead E. R., DiPasquale L. C. Acute toxicity in rats and mice exposed to hydrogen chloride gas and aerosols. Am. Ind. Hyg. Assoc. J. 1974; 35(10)623–631, [PUBMED], [INFOTRIEVE], [CSA]
  • Duffin J., Mohan R. M., Vasiliou P., Stephenson R., Mahamed S. A model of the chemoreflex control of breathing in humans: Model parameters measurement. Respir. Physiol. 2000; 120(1)13–26, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Esposito F. M., Alarie Y. Inhalation toxicity of carbon monoxide and hydrogen cyanide gases released during the thermal decomposition of polymers. J. Fire Sci. 1988; 6(5)78–125, [CSA]
  • Gray E. L., Patton F. M., Goldberg S. B., Kaplan E. Toxicity of the oxides of nitrogen. II. Acute inhalation toxicity of nitrogen dioxide, red fuming nitric acid, and white fuming nitric acid. AMA Arch. Ind. Health 1954; 10(5)418–422, [PUBMED], [INFOTRIEVE], [CSA]
  • Guyton A. C. Measurement of the respiratory volumes of laboratory animals. Am. J. Physiol. 1947; 150: 70–77, [CSA]
  • Harkness J. E., Wagner J. E. The biology and medicine of rabbits and rodents. Lea and Febiger, Philadelphia 1983
  • Hartzell G. E., Packham S. C., Hileman F. D., Israel S. C., Dickman M. L., Bladwin R. C., Mickelson R. W. Physiological and behavioral responses to fire combustion products. Fourth International Cellular Plastics Conference. The Society of the Plastics Industry, Inc., MontrealCanada 1976
  • Hartzell G. E., Packham S. C., Switzer W. G. Assessment of toxic hazards of smoke: Toxicological potency and intoxication rate thresholds. Fire Mater. 1983; 7(3)128–131, [CROSSREF], [CSA]
  • Hartzell G. E., Packham S. C., Grand A. F., Switzer W. G. Modeling of toxicological effects of fire gases: III. Quantification of post-exposure lethality of rats from exposure to HCl atmospheres. J. Fire Sci. 1985a; 3(30)269–281, [CSA]
  • Hartzell G. E., Priest D. N., Switzer W. G. Modeling of toxicological effects of fire gases: II. Mathematical modeling of intoxication of rats by carbon monoxide and hydrogen cyanide. J. Fire Sci. 1985b; 3(2)252–265, [CSA]
  • Hartzell G. E., Stacy H. W., Switzer W. G., Priest D. N., Packham S. C. Modeling of toxicological effects of fire gases: IV. Intoxication of rats by carbon monoxide in the presence of an irritant. J. Fire Sci. 1985c; 3(4)1–17, [CSA]
  • Herpol C., Herpol O. E. Biological evaluation of the toxicity of gases produced under fire conditions by synthetic materials. Part I: Methods and preliminary experiments concerning the reaction of animals to simple mixtures of air and carbon dioxide or carbon monoxide. J. Combust. Sci. Technol. 1976; 12 217–228, [CSA]
  • Higgins E., Fiorca V., Thomas A., Davis H. The acute toxicity of brief exposures to HF, HCl, NO2 and HCN singly and in combination with CO. Federal Aviation Administration, Civil Aeromedical Institute, Oklahoma City, OK 1971, FAA-AM-71-41
  • Higgins E., Fiorica B., Thomas A., Davis H. V. The acute toxicity of brief exposures to HF, HCl, NO2, and HCN with and without CO. Fire Technol 1972; 2: 120–130, [CSA]
  • Hilado C. J., Cumming H. J. Effect of carbon monoxide in Swiss Albino mice. J. Combust. Toxicol. 1977; 4: 216–230, [CSA]
  • Januszkiewicz A. J., Mayorga M. A. Nitrogen dioxide-induced acute lung injury in sheep. Toxicology 1994; 89(3)279–300, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Kaplan H. L., Hartzell G. E. Modeling of toxicological effects of fire gases: I. Incapacitating effects of narcotic fire gases. J. Fire Sci. 1984; 2(4)182–201, [CSA]
  • Kaplan H., Grand A. F., Rogers W. R., Switzer W. G., Hartzell G. E. A research study of the assessment of escape impairment by irritant combustion gases in postcrash aircraft fires. Federal Aviation Administration, Oklahoma City, OK 1984, DOT/FAA/CT-84/16
  • Kaplan H. L., Grand A. F., Switzer W. G., Mitchell D. S., Rogers W. R., Hartzell G. E. Effects of combustion gases on escape performance of the baboon and the rat. J. Fire Sci. 1985; 3: 228–244, [CSA]
  • Kaplan H. L., Anzueto A., Switzer W. G., Hinderer R. K. Effects of hydrogen chloride on respiratory responses and pulmonary function of the baboon. J. Toxicol. Environ. Health 1988; 23: 473–493, [PUBMED], [INFOTRIEVE], [CSA]
  • Kaplan H. L., Switzer W. G., Hinderer R. K., Anzueto A. A study on the acute and long-term effects of hydrogen chloride on respiratory response and pulmonary function and morphology in the baboon. J. Fire Sci. 1993; 11: 459–484, [CSA]
  • Kimmerle M. G. Aspects and methodology for the evaluation of toxicological parameters during fire exposure. J. Fire Flamm./Combust. Toxicol 1974; 1: 4–51, [CSA]
  • Kram R., Taylor R. Energetics of running: A new perspective. Nature 1990; 346: 265–267, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Lai Y.-L. Comparative ventilation of the normal lung. Comparative biology of the normal lung, R. A. Parent. CRC Press, Boca Raton, FL 1992
  • Levin B. C. New research avenues in toxicology: 7-Gas N-Gas Model, toxicant suppressants, and genetic toxicology. Toxicology 1996; 115(1–3)89–106, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Levin B. C. New approaches to toxicity: A seven-gas predictive model and toxicant suppressants. New research avenues in toxicology: 7-Gas N-Gas Model, toxicant suppressants, and genetic toxicology. Drug Chem. Toxicol. 1997; 20(4)271–280, [PUBMED], [INFOTRIEVE], [CSA]
  • Levin B. C., Gurman J. L., Paabo M., Baier L., Holt T. Toxicological effects of different time exposures to the fire gases: Carbon monoxide or hydrogen cyanide or to carbon monoxide combined with hydrogen cyanide or carbon dioxide. Ninth Joint Panel Meeting of the UJNR Panel on Fire Research and Safety, Norwood, MA., 1987a
  • Levin B. C., Paabo M., Gurman J. L., Harris S. E. Effects of exposure to single or multiple combinations of the predominant toxic gases and low oxygen atmospheres produced in fires. Fundam. Appl. Toxicol. 1987b; 9(2)236–250, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Levin B. C., Paabo M., Gurman J. L., Harris S. E., Braun E. Toxicological interactions between carbon monoxide and carbon dioxide. Toxicology 1987c; 47(1–2)135–164, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Levin B. C., Paabo M., Highbarger L., Eller N. Synergistic effects of nitrogen dioxide and carbon dioxide following acute inhalation exposures in rats. U.S. Department of Commerce, Gaithersburg, MD 1989, NISTIR 89-4105
  • Lynch R. D. On the non-existence of synergism between inhaled hydrogen cyanide and carbon monoxide. Fire Res. Note 1035. 1975
  • Martin D. E., Youtsey J. W. Respiratory anatomy and physiology. C. V. Mosby, St. Louis, MO 1988
  • Matijak-Schaper M., Alarie Y. Toxicity of carbon monoxide, hydrogen cyanide and low oxygen. J. Combust. Toxicol 1982; 9: 21–61, [CSA]
  • Mohsenin V. Human exposure to oxides of nitrogen at ambient and supra-ambient concentrations. Toxicology 1994; 89(3)301–312, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Moore S., Gates N. Hydrogen cyanide and chlorine. Chemical warfare agents and related chemical problems. National Defense Research Committee, Washington, DC 1946
  • Morris J. B. Uptake of acrolein in the upper respiratory tract of the F344 rat. Inhal. Toxicol. 1996; 8(4) 387–403, [CSA]
  • Moss R. H., Jackson C. F., Seiberlich J. Toxicity of carbon monoxide and hydrogen cyanide gas mixtures; A preliminary report. AMA Arch. Ind. Hyg. Occup. Med. 1951; 4(1)53–64, [CSA]
  • Pauluhn J. Predictive testing for respiratory sensitisation. Toxicol. Lett. 1996; 86(2–3)177–185, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Pauluhn J., Mohr U. Inhalation studies in laboratory animals—Current concepts and alternatives. Toxicol. Pathol. 2000; 28(5)734–753, [PUBMED], [INFOTRIEVE], [CSA]
  • Pauluhn J., Mohr U. Inhalation toxicity of 4-ethoxyaniline (p-phenetidine): Critical analysis of results of subacute inhalation exposure studies in rats. Inhal. Toxicol. 2001; 13(11)993–1013, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Purser D. A. A bioassay model for testing the incapacitating effects of exposure to combustion product atmospheres using cynomolgus monkeys. J. Fire Sci. 1984; 2: 20–36, [CSA]
  • Purser D. A. Toxicity assessment of combustion products. SFPE handbook of fire protection engineering, P. J. DiNenno, C. L. Beyler, R. L. P. Custer, W. D. Walton, J. M. J. Watts, 1988; 200–244
  • Purser D. A., Grimshaw P., Berrill K. R. Intoxication by cyanide in fires: A study in monkeys using polyacrylonitrile. Arch. Environ. Health 1984; 39(6)394–400, [PUBMED], [INFOTRIEVE], [CSA]
  • Ripple G. R., Mundie T. G. Medical evaluation of nonfragment injury effects in armored vehicle live fire tests. Instrumentation requirements and injury criteria. Walter Reed Army Institute of Research, Washington, DC 1989
  • Sakurai T. Toxic gas tests with several pure and mixed gases using mice. J. Fire Sci. 1989; 7: 22–77, [CSA]
  • Sanders D. C., Endecott B. R. Inhalation toxicology: XI. The effect of elevated temperature on carbon monoxide toxicity. FAA Civil Aeromedical Institute, Oklahoma City, OK 1990, DOT/FAA/AM-90/16
  • Sanders D. C., Endecott B. R., Ritter R. M., Chaturvedi A. K. Variation of time-to-incapacitation and carboxyhemoglobin values in rats exposed to two carbon monoxide concentrations. FAA Civil Aeromedical Institute, Oklahoma City, OK 1993, DOT/FAA/AM-93/7
  • Sanders D. C., Chaturvedi A. K., Endecott B. R., Ritter R. M., Vu N. Toxicity of carbon monoxide–hydrogen gas mixtures: Exposure concentration, time-to-incapacitation, carboxyhemoglobin, and blood cyanide parameters. FAA Civil Aeromedical Institute, Oklahoma City, OK 1994, DOT/FAA/AM-94/7
  • Silver S. D., Ferguson R. L., McGrath F. P., Hunt C. M. Hydrocyanic Acid. Median lethal concentrations for mice: 2- and 30-min exposures. Edgewood Arsenal, Edgewood, MD 1941, EATR 360
  • Silver S. D., McGrath F. P., Krackow E. H. Hydrocyanic acid LC50 for rats exposed for 2 min. 1944, TRLR 22
  • Skogg E. A toxicological investigation of lower aliphatic aldehydes: 1. Toxicity of formaldehyde, acetaldehyde, propionaldehyde, and butyraldehyde; as well as of acrolein and crotonaldehyde. Acta Pharmacol. 1950; 6: 299–318, [CSA]
  • Smith S. M., Stuhmiller J. H., Januszkiewicz A. J. Evaluation of lethality estimates for combustion gases in military scenarios. Toxicology 1996; 115(1–3)157–165, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Speitel L. C. Toxicity assessment of combustion gases and development of a survival model. U.S. Department of Transportation, FAA, Atlantic City International Airport, , NJ 1995, DOT/FAA/AR-95/5
  • Stavert D. M., Lehnert B. E. Nitric oxide and nitrogen dioxide as inducers of acute pulmonary injury when inhaled at relatively high concentrations for brief periods. Inhal. Toxicol. 1990; 2(1)53–67, [CSA]
  • Stuhmiller J. H., Stuhmiller L. M. An internal dose model for interspecies extrapolation of immediate incapacitation risk from inhalation of fire gases. Inhal. Toxicol. 2002; 14(9)929–957, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Stuhmiller J. H., Stuhmiller L. M. A mathematical model of ventilation response to inhaled carbon monoxide. J. Appl. Physiol. 2005; 98(6)2033–2044, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Weibel E. R. The pathway for oxygen: Structure and function of the mammalian respiratory system. Harvard University Press, Cambridge, MA 1984
  • Wohlslagel J., DiPasquale L. C., Vernot E. Toxicity of solid rocket motor exhaust: Effects of HCl, HF, and alumina on rodents. J. Combust. Toxicol 1976; 3: 61–70, [CSA]
  • Yamamoto K., Kuwahara C. A study on the combined action of CO and HCN in terms of concentration-time products. Z. Rechtsmed. 1981; 86(4)287–294, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Yamamoto K., Yamamoto Y. Toxicity of gases released by polyurethane foams subjected to sufficiently high temperature. Nippon Hoigaku Zasshi 1971; 25(4)303–314, [PUBMED], [INFOTRIEVE], [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.