Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 20, 2008 - Issue 1
1,944
Views
425
CrossRef citations to date
0
Altmetric
Research Article

Evaluating the Toxicity of Airborne Particulate Matter and Nanoparticles by Measuring Oxidative Stress Potential—A Workshop Report and Consensus Statement

, , , , , , , , , , , , , , , , , , & show all
Pages 75-99 | Received 12 Jul 2007, Accepted 08 Aug 2007, Published online: 06 Oct 2008

REFERENCES

  • Antonini J. M., Stone S., Chen B., Roberts J., Frazer A., Donlin M, Cumpston J., Frazer D. Acute effects of stainless steel welding fume inhalation on lung injury, inflammation, and defense responses. The Toxicologist 2006; 90: A1057
  • Aust A. E., Ball J. C., Hu A. A., Lighty J. S., Smith K. R., Straccia A. M., et al. Particle characteristics responsible for effects on human lung epithelial cells. Res. Rep. Health Eff. Inst 2002; 1–65
  • Baker M. A., Cerniglia G. J., Zaman A. Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal. Biochem. 1990; 190: 360–365
  • Baulig A., Garlatti M., Bonvallot V., Marchand A., Barouki R., Marano F., Baeza-Squiban A. Involvement of reactive oxygen species in the metabolic pathways triggered by diesel exhaust particles in human airway epithelial cells. Am. J. Physiol. Lung. Cell Mol. Physiol. 2003a; 285: L671–679
  • Baulig A., Poirault J. J., Ausset P., Schins R., Shi T., Baralle D., Dorlhene P., Meyer M., Lefevre R., Baeza-Squiban A., Marano F. Physicochemical characteristics and biological activities of seasonal atmospheric particulate matter sampling in two locations of Paris. Environ. Sci. Technol. 2004; 38: 5985–5992
  • Baulig A., Sourdeval M., Meyer M., Marano F., Baeza-Squiban A. Biological effects of atmospheric particles on human bronchial epithelial cells. Comparison with diesel exhaust particles. Toxicol. In. Vitro 2003b; 17: 567–573
  • Blanchet S., Ramgolam K., Baulig A., Marano F., Baeza-Squiban A. Fine particulate matter induces amphiregulin secretion by bronchial epithelial cells. Am. J. Respir. Cell Mol. Biol. 2004; 30: 421–427
  • Boland S., Baeza-Squiban A., Fournier T., Houcine O., Gendron M. C., Chevrier M., Jouvenot G., Coste A., Aubier M., Marano F. Diesel exhaust particles are taken up by human airway epithelial cells in vitro and alter cytokine production. Am. J. Physiol 1999; 276: L604–613
  • Boland S., Bonvallot V., Fournier T., Baeza-Squiban A., Aubier M., Marano F. Mechanisms of GM-CSF increase by diesel exhaust particles in human airway epithelial cells. Am. J. Physiol. Lung. Cell Mol. Physiol 2000; 278: L25–32
  • Bonvallot V., Baeza-Squiban A., Baulig A., Brulant S., Boland S., Muzeau F., Barouki R., Marano F. Organic compounds from diesel exhaust particles elicit a proinflammatory response in human airway epithelial cells and induce cytochrome p450 1A1 expression. Am. J Respir. Cell Mol. Biol. 2001; 25: 515–521
  • Bonvallot V., Baeza-Squiban A., Boland S., Marano F. Activation of transcription factors by diesel exhaust particles in human bronchial epithelial cells in vitro. Inhal. Toxicol. 2000; 12: 359–364
  • Brunekreef B., Holgate S. T. Air pollution and health. Lancet 2002; 360: 1233–1242
  • Buettner G. R., Jurkiewicz B. A. Catalytic metals, ascorbate and free radicals: combinations to avoid. Radiat Res 1996; 145: 532–541
  • Bullen J. J., Ward C. G., Wallis S. N. Virulence and the role of iron in Pseudomonas aeruginosa infection. Infect. Immun. 1974; 10: 443–50
  • Campian E. C., Cai J., Benz F. W. Acrylonitrile irreversibly inactivates glyceraldehyde-3-phosphate dehydrogenase by alkylating the catalytically active cysteine 149. Chem. Biol. Interact. 2002; 140: 279–291
  • Cantin A. M., North S. L., Hubbard R. C., Crystal R. G. Normal alveolar epithelial lining fluid contains high levels of glutathione. J. Appl. Physiol. 1987; 63: 152–157
  • Chang M. C., Sioutas C., Cassee F. Field evaluation of a mobile high-capacity particle size classifier (HCPSC) for separate collection of coarse, fine and ultrafine particles. J. Aerosol. Sci. 2001; 32: 139–156
  • Chang M. C., Sioutas C., Kim S., Gong H., Jr., Linn W. S. Reduction of nitrate losses from filter and impactor samplers by means of concentration enrichment. Atmos. Environ. 2000; 34: 85–98
  • Chen J., Mehta J. L. Role of oxidative stress in coronary heart disease. Indian Heart J. 2004; 56: 163–173
  • Cho A. K., Sioutas C., Miguel A. H., Kumagai Y., Schmitz D. A., Singh M., Eiguren-Fernandez A., Froines J. R. Redox activity of airborne particulate matter at different sites in the Los Angeles Basin. Environ Res. 2005; 99: 40–47
  • Coudray C., Favier A. Determination of salicylate hydroxylation products as an in vivo oxidative stress marker. Free Radic Biol Med. 2000; 29: 1064–1070
  • Ding M., Lu Y., Bowman L., Leonard S., Castranova V., Vallyathan V. (2006) Titanium nanoparticles induces AP-1 activation through ROS and MAPKS pathways. 1st International Toxicology of Nanomaterial: Biomedical Aspects Meeting, Miami Beach, FLU.S.A., 29 January-1 February, 2006, 101
  • Donaldson K., Beswick P. H., Gilmour P. S. Free radical activity associated with the surface of particles: a unifying factor in determining biological activity?. Toxicology Letters 1996; 88: 293–298
  • Donaldson K., Brown D. M., Mitchell C., Dineva M., Beswick P. H., Gilmour P., MacNee W. Free radical activity of PM10: iron-mediated generation of hydroxyl radicals. Environ. Health Perspect 1997; 105: 1285–1289, Suppl. 5
  • Donaldson K., Stone V., Borm P. J., Jimenez L. A., Gilmour P., Schins R. P., et al. Oxidative stress and calcium signaling in the adverse effects of environmental particles (PM10). Free Radic Biol. Med 2003; 34: 1369–1382
  • Donaldson K., Tran L., Jimenez L., Duffin R., Newby D. E., Mills N., et al. Combustion-derived nanoparticles: A review of their toxicology following inhalation exposure. Part Fibre Toxicol 2005; 2: 10
  • Eatough D. J., Long R. W., Modey W. K. Semi-volatile secondary organic aerosol in urban atmospheres: meeting a measurement challenge. Atmos. Environ. 2003; 37: 1277–1292
  • Ford E. S, Cogswell M. E. Diabetes and serum ferritin concentration among U.S. adults. Diabetes Care 1999; 22: 1978–1983
  • Fubini B. Surface chemistry and quartz hazard. Ann Occup Hyg. 1998; 42: 521–530
  • Geller M. D., Kim S., Misra C., Sioutas C., Olson B. A., Marple V. A. A methodology for measuring size-dependent chemical composition of ultrafine particles. Aerosol Sci. & Technol. 2002; 36: 748–762
  • Ghio A. J., Cohen M. D. Disruption of iron homeostasis as a mechanism of biologic effect by ambient air pollution particles. Inhal Toxicol. 2005; 17: 709–716
  • Gilliland F. D., Li Y. F., Saxon A., Diaz-Sanchez D. Effect of glutathione-S-transferase M1 and P1 genotypes on xenobiotic enhancement of allergic responses: randomised, placebo-controlled crossover study. Lancet 2004; 363: 119–125
  • Gilmour P. S., Brown D. M., Lindsay T. G., Beswick P. H., MacNee W., Donaldson K. Adverse health-effects of PM10 particles – involvement of iron in generation of hydroxyl radical. Occup. & Environ Med 1996; 53: 817–822
  • Grievink L., Zijlstra A. G., Ke X., Brunekreef B. Double-blind intervention trial on modulation of ozone effects on pulmonary function by antioxidant supplements. Am. J. Epidemiol. 1999; 149: 306–314
  • Harrison R. M., Jones A. M., Lawrence R. G. A pragmatic mass closure model for airborne particulate matter at urban background and roadside sites. Atmos. Environ 2003; 37: 4927–4933
  • Harrison R. M., Yin J. Particulate matter in the atmosphere: Which particle properties are important for its effects on health?. Sci. Tot. Environ 2000; 249: 85–101
  • Hiura T. S., Kaszubowski M. P., Li N., Nel A. E. Chemicals in diesel exhaust particles generate reactive oxygen radicals and apoptosis in macrophages. J. Immunol. 1999; 163: 5582–5591
  • Hiura T. S., Li N., Horwitz M., Seagrave J.-C., Nel A. E. The role of a mitochondrial pathway in the induction of apoptosis by chemicals extracted from diesel exhaust particles. J. Immunol. 2000; 165: 2703–2711
  • Iriyama K., Yoshiura M., Iwamoto T., Ozaki Y. Simultaneous determination of uric and ascorbic acids in human serum by reversed-phase high-performance liquid chromatography with electrochemical detection. Anal. Biochem. 1984; 141: 238–243
  • Janssen N. A. H., Schwartz J., Zanobetti A., Suh H. H. Air conditioning and source-specific particles as modifiers of the effect PM10 on hospital admissions for heart and lung disease. Environ. Health Pespect 2002; 110: 43–49
  • Jenkinson S. G., Black R. D., Lawrence R. A. Glutathione concentrations in rate lung bronchoalveolar lavage fluid: Effect of hyperoxia. J. La. Clin. Med 1988; 112: 345
  • Kagan V. E., Tyurina Y. Y., Tyurin V. A., Kendura N. V., Potapovich A. I., Osipov A. N., Kisin E. R., Schwegler-Berry D., Mercer R., Castranova V., Shvedova A. A. Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron. Toxicol. Lett 2006; 165: 88–100
  • Katsouyanni K., Touloumi G., Samoli E., Gryparis A., Le Terte A., Monopolis Y., Rossi G., Zmirou D., Ballester F., Boumghar A., Anderson H. R., Wojtyniak B., Paldy A., Braunstein R., Pekkanen J., Schindler C., Schwartz J. Confounding and effect modification in the short-term effects of ambient particles on total mortality: Results from 29 European cities within the APHEA2 project. Epidemiology. 2001; 12: 521–531
  • Kelly F. J., Mudway I., Bloomberg A., Frew A. J., Sandström T. Altered lung antioxidant status in patients with mild asthma. Lancet. 1999; 354: 482–483
  • Kelly F. J. Oxidative stress: its role in air pollution and adverse health effects. Occup. Environ. Med. 2003; 60: 612–616
  • Khlystov A., Zhang Q., Jimenez J. L., Stanier C., Pandis S. N., Canagaratna M. R., Fine P., Misra C., Sioutas C. In situ concentration of semi-volatile aerosol using water-condensation technology. J. Aerosol. Sci. 2005; 36: 866–880
  • Khlystov A., Wyers G. P., Slanina J. The steam jet aerosol collector. Atmos. Environ. 1995; 29: 2229–2234
  • Kim S., Jaques P. A., Chang M. C., et al. Versatile aerosol concentration enrichment system (VACES) for simultaneous in vivo and in vitro evaluation of toxic effects of ultrafine, fine and coarse ambient particles—Part I: Development and laboratory characterization. J. Aerosol. Sci. 2001a; 32: 1281–1297
  • Kim S., Jaques P. A., Chang M. C., et al. Versatile aerosol concentration enrichment system (VACES) for simultaneous in vivo and in vitro evaluation of toxic effects of ultrafine, fine and coarse ambient particles – Part II: Field evaluation. J. Aerosol. Sci. 2001b; 32: 1299–1314
  • Knaapen A. M., Borm P. J., Albrecht C., Schins R. P. Inhaled particles and lung cancer. Part A: Mechanisms. Int. J. Cancer 2004; 109: 799–809
  • Kooter I. M., Boere A. J., Fokkens P. H., et al. Response of spontaneously hypertensive rats to inhalation of fine and ultrafine particles from traffic: experimental controlled study. Part Fibre Toxicol 2006; 3: 7
  • Kooter I. M., Pennings J., Fokkens P., et al. Ozone induces clear cellular and molecular responses in the mouse lung independently of the transcription-coupled repair status. J. Appl. Physiol 2007; 102: 1185–1192
  • Kooter I., Pennings J., Opperhuizen A., et al. Gene expression pattern in spontaneously hypertensive rats exposed to urban particulate matter (EHC-93). Inhal. Toxicol. 2005; 17: 53–65
  • Kumagai Y., Koide S., Taguchi K., Endo A., Nakai Y., Yoshikawa T., Shimojo N. Oxidation of proximal protein sulfhydryls by phenanthraquinone, a component of diesel exhaust particles. Chem. Res. Toxicol. 2002; 15: 483–489
  • Kunzli N., Mudway I. S., Gotschi T., et al. Comparison of oxidative properties, light absorbance, total and elemental mass concentration of ambient PM2.5 collected at 20 European sites. Environ. Health Perspect 2006; 114: 684–690
  • Li N., Alam J., Venkatesan M. I., Eiguren-Fernandez A., Schmitz D., Di Stefano E. M., Slaughter N., Killeen E., Wang X., Huang A., Wang M., Miguel A. H., Cho A., Sioutas C., Nel A. E. Nrf2 is a key transcription factor that regulates antioxidant defense in macrophages and epithelial cells: protecting against the pro-inflammatory and oxidizing effects of diesel exhaust chemicals. J. Immunol. 2004; 173: 3467–3481
  • Li N., Hao M., Phalen R. F., Hinds W., Nel E. Particulate air pollutants and asthma: a paradigm for the role of oxidative stress in PM-induced adverse health effects. Clin. Immunol 2003b; 3: 250–265
  • Li N., Kim S., Wang M., Froines J., Sioutas C., Nel A. E. Use of a stratified oxidative stress model to study the biological effects of ambient concentrated and diesel exhaust particulate matter. Inhal. Toxicol. 2002a; 14: 101–128
  • Li N., Nel A. E. Role of the Nrf2-mediated signaling pathway as a negative regulator of inflammation: implications for the impact of particulate pollutants on asthma. Antioxid Redox Signal 2006; 8: 88–98
  • Li N., Sioutas C., Cho A., Schmitz D., Misra C., Sempf J., Wang M., Oberley T., Froines J., Nel A. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ. Health Perspect. 2003a; 111: 455–460
  • Li N., Wang M., Sempf J. M., Oberley T. D., Nel A. E. Comparison of the oxidative stress effects of organic DEP chemicals in bronchial epithelial cells and macrophages. J. Immunol. 2002b; 169: 4531–4541
  • Li N., Venkatesan I. M., Miguel A., Kaplan Gujuluva S., Alam J., Nel A. Induction of heme oxygenase-1 expression in macrophages by diesel exhaust particle chemicals and quinones via the antioxidant responsive element. J. Immunol. 2000; 165: 3393–3401
  • Li Z., Salmen R., Hulderman T., Kisin E., Shvedova A. A., Luster M. I. Pulmonary exposure to carbon nanotubes induces vascular toxicity. The Toxicologist 2005; 84: A1045
  • Li Z. J., Chapman R., Hulderman T., Salmen, Shvedova A., Luster M. I., Simeonova P. P. Relationship of pulmonary exposure to multiple doses of single wall carbon nanotubes and atherosclerosis in APOE-/-mouse model. The Toxicologist 2006; 90: A1555
  • Liu J., Steinberg S. M., Johnson B. J. A high performance liquid chromatography method for determination of gas-phase hydrogen peroxide in ambient air using Fenton's chemistry. Chemosphere. 2003; 52: 815–823
  • Lund L. G., Aust A. E. Iron-catalyzed reactions may be responsible for the biochemical and biological effects of asbestos. Biofactors 1991; 3: 83–89
  • Lucas A. R., Korol R., Pepine C. J. Inflammation in atherosclerosis: some thoughts about acute coronary syndromes. Circulation 2006; 113: e728–e732
  • MacNee W. Oxidative stress and lung inflammation in airways disease. Eur. J. Pharmacol. 2001; 429: 195–207
  • Mainelis G., Willeke K., Adhikari A., et al. Design and collection efficiency of a new electrostatic precipitator for bioaerosol collection. Aerosol. Sci. Technol. 2002; 36: 1073–1085
  • McNeilly J. D., Jimenez L. A., Clay M. F., MacNee W., Howe A., Heal M. R., et al. Soluble transition metals in welding fumes cause inflammation via activation of NF-kappaB and AP-1. Toxicol. Lett 2005; 158: 152–157
  • Mercer R. R., Scabilloni J., Kisin K., Gorelik O., Arepall S., Murray A. R., Castranova V., Shvedova A. A. Responses of lung parenchyma to carbon nanotubes. The Toxicologist 2005; 84: A1042
  • Misra C., Fine P. M., Singh M., Sioutas C. Development and Evaluation of an Ultrafine Particle Concentrator Facility for Human Exposures. Aerosol Sci. Technol. 2004; 38: 27–35
  • Mudway I. S., Duggan S. T., Venkataraman C., Habib G., Kelly F. J., Grigg J. Combustion of dried animal dung as biofuel results in the generation of highly redox active fine particulates. Part Fibre Toxicol 2005; 2: 6
  • Mudway I. S., Stenfors N., Duggan S. T., Roxborough H., Zielinski H., Marklund S. L., Blomberg A., Frew A. J., Sandstrom T., Kelly F. J. An in vitro in vivo investigation of the effects of diesel exhaust on human airway lining fluid antioxidants. Arch. Biochem.Biophys 2004; 423: 200–213
  • Murray A. R., Kisin E., Castranova V., Kommineni C., Kagan V. E., Shvedova A. A. (2006) Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. 1st International Toxicology of Nanomaterial: Biomedical Aspects Meeting, Miami Beach, FLU.S.A., 29 January-1 February, 2006, 50
  • Nel A. Atmosphere. Air pollution-related illness: Biomolecular effects of particles. Science 2005; 308: 804
  • Nel A., Xia T., Maëdler L., Li N. Toxic potential of materials at the nanolevel?. Science 2006; 311: 622–627
  • Nurkiewicz T. R., Porter D. W., Barger M., Millecchia L., Rao K. M., Marvar P. J., Hubbs A. F., Castranova V., Boegehold M. A. Systemic microvascular dysfunction and inflammation after pulmonary particulate matter exposure. Environ. Health Perspect. 2006; 114: 412–419
  • Nurkiewicz T. R., Porter D. W., Hubbs A. F., Millecchia L., Stone S., Chen B. T., Frazer D., Castranova V., Boegehold M. A. Inhalation of ultrafine titanium dioxide augments particle-dependent microvascular dysfunction. FASEB J 2007; 21: A666
  • Oberdorster G., Maynard A., Donaldson K., Castranova V., Fitzpatrick J., Ausman K., Carter J., Karn B., Kreyling W., Lai D., Olin S., Monteiro-Riviere N., Warheit D., Yang H. Principles for characterizing the potential human effects from exposure to nanomaterials. Particle and Fibre Toxicol. 2005; 2: 8–25
  • O'Donnell R., Breen D., Wilson S., Djukanovic R. Inflammatory cells in the airways in COPD. Thorax. 2006; 61: 448–454
  • Olakanmi O., McGowan S. E., Hayek M. B., et al. Iron sequestration by macrophages decreases the potential for extracellular hydroxyl radical formation. J. Clin. Invest. 1993; 91: 889–899
  • Peden D. B., et al. Uric acid is a major antioxidant in human nasal airway secretions. Proc. Natl. Acad Sci. USA 1990; 87: 7638
  • Peters A., Wichmann H. E., Tuch T., et al. Respiratory effects are associated with the number of ultrafine particles. Am. J. Respir. Crit. Care. Med. 1997; 155: 1376–1383
  • Pope C. A., Dockery D. W. Epidemiology of particle effects. Air Pollution and Health, S. T. Holgate, J. M. Samet, H. S. Koren, R. L. Maynard. Academic Press, San Diego 1999; 673–705
  • Porter D. W., Leonard S. S., Castranova V. Particles and cellular oxidative and nitrosative stress. Particle Toxicology, K Donaldson, P Borm. CRC Press, Boca Raton 2007; 119–138
  • Riedl M., Diaz-Sanchez D. Biology of diesel exhaust effects on respiratory function. J. Allergy Clin Immunol 2005; 115: 221–228
  • Risom L., Moller P., Loft S. Oxidative stress-induced DNA damage by particulate air pollution. Mutat. Res. 2005; 30: 119–137
  • Rodriguez C. E., Fukuto J. M., Taguchi K., Froines J., Cho A. K. The interactions of 9,10-phenanthrenequinone with glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a potential site for toxic actions. Chem. Biol. Interact. 2005; 155: 97–110
  • Romieu I., Meneses F., Ramirez M., Ruiz S., Perez Padilla R., Sienra J., Gerber M., Grievink L., Dekker R., Walda I., Brunekreef B. Antioxidant supplementation and respiratory functions among workers exposed to high levels of ozone. Am. J. Respir. Crit. Care. Med. 1998; 158: 226–232
  • Romieu I., Sienra-Monge J. J., Ramirez-Aguilar M., Tellez-Rojo M. M., Moreno-Macias H., Reyes-Ruiz N. I., del Rio-Navarro B. E., Ruiz-Navarro M. X., Hatch G., Slade R., Hernandez-Avila M. Antioxidant supplementation and lung functions among children with asthma exposed to high levels of air pollutants. Am. J. Respir. Crit. Care. Med. 2002; 166: 703–709
  • Sagai M., Saito H., Ichinose T., Kodama M., Mori Y. Biological effects of diesel exhaust particles. I. In vitro production of superoxide and in vivo toxicity in mouse. Free Radic Biol. Med 1993; 14: 37–47
  • Sager T., Porter D., Robinson V. A., Lindsley W. G., Schwegler-Berry D. E., Castranova V. Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity. Nanotoxicology. 2007; 1: 118–129
  • Samet J. M., Hatch G. E., Horstman D., Steck-Scott S., Arab L., Bromberg P. A., Levine M., McDonnell W. F., Devlin R. B. Effect of antioxidant supplementation on ozone-induced lung injury in human subjects. Am. J. Respir. Crit. Care. Med 2001; 164: 819–25
  • Sandstrom T., Cassee F. R., Salonen R., Dybing E. Recent outcomes in European multicentre projects on ambient particulate air pollution. Toxicol. Appl. Pharmacol. 2005; 207: 261–8
  • Say A. E., Gursurer M., Yazicioglu M. V., Ersek B. Impact of body iron status on myocardial perfusion, left ventricular function, and angiographic morphologic features in patients with hypercholesterolemia. Am.Heart J. 2002; 143: 257–64
  • Schafer F. Q., Buettner G. R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol. Med. 2001; 30: 1191–1212
  • Schafer M., Schafer C., Ewald N., Piper H. N., Noll Th. Role of redox signaling in the autonomous proliferative response of endothelial cells to hypoxia. Circulation Research. 2003; 92: 1010–1015
  • Schauer C., Niessner R., Poschl U. Polycyclic aromatic hydrocarbons in urban air particulate matter: Decadal and seasonal trends, chemical degradation, and sampling artifacts. Environ. Sci. Technology. 2003; 37: 2861–2868
  • Schaumann F., Borm P. J., Herbrich A., et al. Metal-rich ambient particles (particulate matter 2.5) cause airway inflammation in healthy subjects. Am. J. Respir. Crit. Care. Med 2004; 170: 898–903
  • Schlesinger R. B., Cassee F. R. Atmospheric secondary particulate matter: the toxicological perspective as a basis for health risk assessment. Inhal. Toxicol 2003; 15: 197–235
  • Schwartz J., Laden F., Zanobetti A. The concentration-response relation between PM2.5 and daily deaths. Environ. Health Perspect 2002; 110: 1025–1029
  • Seagrave J., McDonald J. D., Reed M. D., et al. Responses to subchronic inhalation of low concentrations of diesel exhaust and hardwood smoke measured in rat bronchoalveolar lavage fluid. Inhal. Toxicol. 2005; 17: 657–670
  • Shi T., Duffin R., Borm P. J., Li H., Weishaupt C., Schins R. P. Hydroxyl-radical-dependent DNA damage by ambient particulate matter from contrasting sampling locations. Environ. Res. 2006; 101: 18–24
  • Shi T., Schins R. P., Knaapen A. M., et al. Hydroxyl radical generation by electron paramagnetic resonance as a new method to monitor ambient particulate matter composition. J. Environ. Monit. 2003; 5: 550–556
  • Shvedova A., Kisin E. R., Mercer R., Murray A. R., Johnson V. J., Potapovich A. I., Tyurina Y. Y., Gorelik O., Arepalli S., Schwegler-Berry D., Hubbs A. F., Antonini J., Evans D. E., Ku B. K., Ramsey D., Maynard A., Kagan V. E., Castranova V., Baron P. Unusual inflammatory and fibrogenic pulmonary responses to single walled carbon nanotubes in mice. Am. J. Physiol. Lung. Cell Mol. Physiol. 2005; 289: 689–708
  • Shvedova A. A., Sager T., Murray A. R., Kisin E., Porter D. W., Leonard S. S., Schwegler-Berry D., Robinson V. A., Castranova V. Critical issues in the evaluation of possible adverse pulmonary effects resulting from airborne nanoparticles. Nanotechnology: Characterization, Dosing and Health Effects, N Monteiro-Riviere, L Tran. Informa Healthcare, New York 2007; 221–232, Chap. 14
  • Shvedova A. A., Kisin E. R., Murray A. R., Schwegler-Berry D., Gandelsman V. Z., Maynard A., Baron P., Castranova V. Exposure to carbon nanotube material: Assessment of the biological effects of nanotube materials using human keratinocytes. J. Toxicol. Environ. Health Part A. 2003; 66: 1901–1926
  • Skoza L., Snyder A., Kikkawa Y. Ascorbic acid in bronchoalveolar wash. Lung 1983; 161: 99
  • Squadrito G. L., Cueto R., Dellinger B., Pryor W. A. Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter. Free Radic Biol. Med. 2001; 31: 1132–1138
  • Themann C., Teismann P., Kuschinsky K., Ferger B. Comparison of two independent aromatic hydroxylation assays in combination with intracerebral microdialysis to determine hydroxyl free radicals. J Neurosci Methods. 2001; 108: 57–64
  • Tsaparakis M., Stephanou E. G. Collection of gas and particle semi-volatile organic compounds: use of an oxidant denuder to minimize polycyclic aromatic hydrocarbons degradation during high-volume air sampling. Atmos. Environ. 2003; 37: 4935–4944
  • van der Vliet A., O'Neill C. A., Cross C. E., Koostra J. M., Volz W. G., Halliwell B., Louie S. Determination of low-molecular-mass antioxidant concentrations in human respiratory tract lining fluids. Am. J. Physiol 1999; 276: L289–L296
  • Vreman H. J., Stevenson D. K. Heme oxygenase activity as measured by carbon monoxide production. Anal. Biochem. 1988; 168: 31–38
  • Walsh G. M. Targeting airway inflammation: novel therapies for the treatment of asthma. Curr Med Chem. 2006; 13: 3105–3111
  • Wang H. C., John W. Characteristics of the Berner Impactor for sampling inorganic ions. Aerosol. Sci. Technol 1988; 8: 1570172
  • Wang M., Xiao G. G., Li N., Xie T., Loo J. A., Nel A. E. Phosphoproteome and cytokine array analysis show MAP kinases mediate inflammation by pro-oxidative diesel exhaust particle chemicals. Electrophoresis. 2005; 26: 2092–2108
  • Willis R. J., Kratzing C. C. Ascorbate acid in rat lung. Biochem. Biophys. Res. Commun 1974; 59: 1250, www.NERCenter.org2006 Ref Type: Electronic Citation
  • Xia T., Korge P., Weiss J. N., Li N., Venkatesen, Sioutas C., Nel A. Quinones and aromatic chemical compounds in particulate matter (PM) induce mitochondrial dysfunction: implications for PM-induced oxidative stress and toxicity. Environ. Health Perspect. 2004; 112: 1347–1358
  • Xia T., Kovochich M., Brant J., Hotze M., Sempf J., Oberley T., Sioutas C., Yeh J. I., Wiesner M. R., Nel A. E. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nanoletters 2006a; 6: 1794–1807
  • Xia T., Kovochich M., Nell A. The role of reactive oxygen species and oxidative stress in mediating paticulate matter injury. Clin Occup Environ Med Exp to Airborne Particles: Health Effects and Mechanisms 2006b; 5: 817–826
  • Xiao G. G., Wang M., Li N., Loo J. A., Nel A. E. Use of proteomics to demonstrate a hierarchical oxidative stress response to diesel exhaust particles in a macrophage cell line. J. Biol. Chem. 2003; 278: 50781–50790
  • Zhao Y., Bein K. J., Wexler A. S., Misra C., Fine P. M., Sioutas C. Field evaluation of the versatile aerosol concentration enrichment system (VACES) particle concentrator coupled to the rapid single-particle mass spectrometer (RSMS-3). J. Geophys Res-Atmospheres 2005; 110(D7), Art. No. D07S02
  • Zielinski H., Mudway I. S., Berube K. A., Murphy S., Richards R., Kelly F. J. Modeling the interactions of particulates with epithelial lining fluid antioxidants. Am. J. Physiology 1999; 277: L791–L726

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.