Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 20, 2008 - Issue 6
157
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Unsteady-State Airflow and Particle Deposition in a Three-Generation Human Lung Geometry

&
Pages 595-610 | Received 07 Dec 2007, Accepted 23 Jan 2008, Published online: 06 Oct 2008

REFERENCES

  • Allen J. L., Frantz I. D., 3rd, Fredberg J. J. Regional alveolar pressure during periodic flow: Dual manifestations of gas inertia. J. Clin. Invest. 1985; 76: 620–629
  • Anjilvel S., Asgharian B. A multiple-path model of particle deposition in the rat lung. Fundam. Appl. Toxicol. 1995; 28: 41–50
  • Asgharian B., Price O. T. Airflow distribution in the human lung and its influence on particle deposition. Inhal. Toxicol. 2006; 18: 795–801
  • Asgharian B., Price O. T., Hofmann W. Prediction of particle deposition in the human lung using realistic models of lung ventilation. J. Aerosol Sci. 2006a; 37: 1209–1221
  • Asgharian B., Price O. T., Oberdörster G. The effect of gravity on airflow distribution and particle deposition in the lung. Inhal. Toxicol. 2006b; 18: 473–481
  • Bake B., Wood L., Murphy B., Macklem P. T., Milic-Emili J. Effect of inspiratory flow rate on regional distribution of inspired gas. J. Appl. Physiol. 1974; 37: 8–17
  • Balashazy I., Hofmann W. Particle deposition in airway bifurcations—I. Inspiratory flow. J. Aerosol Sci. 1993; 24: 745–772
  • Balashazy I., Hofmann W. Deposition of aerosols in asymmetric airway bifurcations. J. Aerosol Sci. 1995a; 26: 273–292
  • Balashazy I., Hofmann W., Heistracher T. Ultrafine particle deposition in human and rat bronchial airway bifurcations. J. Aerosol Sci. 1993; 26(suppl. 1)S535–S536
  • Balashazy I., Hofmann W. Fluid dynamics and related particle deposition patterns in human airway bifurcations. Medical applications of computer modeling: The respiratory system, T. B. Martonen. WIT Press, SouthamptonUK 2001; 83–108
  • Balashazy I., Heistracher T., Hofmann W. Airflow and particle deposition patterns in bronchial airway bifurcations: The effect of different CFD models and bifurcation geometries. J. Aerosol Med. 1996; 9: 287–301
  • Balashazy I., Hofmann W., Heistracher T. Computation of local enhancement factors for the quantification of particle deposition patterns in airway bifurcations. J. Aerosol Sci. 1999; 30: 185–203
  • Balashazy I., Nemeth I., Alfoldy B., Szabo P. P., Hegedus C. S., Hofmann W., Palfalvi J., Feher I., Torok S. Aerosol deposition modeling in human airways and alveoli. J. Aerosol Sci. 2000; 31(suppl. 1)482–483
  • Balashazy I., Hofmann W., Heistracher T. Local particle deposition patterns may play a key role in the development of lung cancer. J. Appl. Physiol. 2003; 94: 1719–1725
  • Calay R. K., Kurujareon J., Holdo A. E. Numerical simulation of respiratory flow patterns within human lung. Respir. Physiol. Neurobiol. 2002; 130: 201–221
  • Caro C. Swirling steady inspiratory flow in models of human bronchial airways. Ann. Biomed. Eng 2001; 29: S138
  • Chang H. K., El-Masry O. A. A model study of flow dynamics in human central airways. Part 1: Axial velocity profiles. Respir. Physiol. 1982; 49: 75–95
  • Chang Y. H., Yu C. P. A model of ventilation distribution in the human lung. Aerosol Sci. Technol. 1999; 30: 309–319
  • Cohen B. S., Sussman R. G., Lippmann M. Ultrafine particle deposition in a human tracheobronchial cast. Aerosol Sci. Technol. 1990; 12: 1082–1091
  • Comer J. K., Kleinstreuer C., Hyun S., Kim C. S. Aerosol transport and deposition in sequentially bifurcating airways. J. Biomech. Eng. 2000; 122: 152–158
  • Comer J. K., Kleinstreuer C., Kim C. S. Flow structures and particle deposition patterns in double-bifurcation airway models. Part 2: Aerosol transport and deposition. J. Fluid Mech. 2001a; 435: 55–80
  • Comer J. K., Kleinstreuer C., Zhang Z. Flow structures and particle deposition patterns in double-bifurcation airway models. Part 1: Air flow fields. J. Fluid Mech. 2001b; 435: 25–54
  • Darquenne C. A realistic two-dimensional model of aerosol transport and deposition in the alveolar zone of the human lung. J. Aerosol Sci. 2001; 32: 1161–1174
  • Darquenne C. Heterogeneity of aerosol deposition in a two-dimensional model of human alveolated ducts. J. Aerosol Sci. 2002; 33: 1261–1278
  • Darquenne C., Paiva M. Two- and three-dimensional simulations of aerosol transport and deposition in alveolar zone of human lung. J. Appl. Physiol. 1996; 80: 1401–1414
  • Dollfuss R. E., Milic-Emili J., Bates D. V. Regional ventilation of the lung, studied with boluses of 133 xenon. Respir. Physiol. 1967; 2: 234–246
  • Gradon L., Orlicki D. Deposition of inhaled aerosol particles in a generation of the tracheobronchial tree. J. Aerosol Sci. 1990; 21: 3–19
  • Henry F. S., Butler J. P., Tsuda A. Kinematically irreversible acinar flow: A departure from classical dispersive aerosol transport theories. J. Appl. Physiol. 2002; 92: 835–845
  • Heyder J., Gebhart J., Rudolf G., Schiller C. F., Stahlhofen W. Deposition of particles in the human respiratory tract in the size range 0.005–15 μ m. J. Aerosol Sci. 1986; 17: 811–825
  • Hofmann W., Balashazy I., Heistracher T. The relationship between secondary flows and particle deposition patterns in airway bifurcations. Aerosol Sci. Technol. 2001; 35: 958–968
  • Hruba F., Fabianova F., Koppova K., Vandenberg J. J. Childhood respiratory symptoms, hospital admissions, and long-term exposure to airborne particulate matte. J. Expos. Anal. Environ. Epidemiol. 2001; 11: 33–40
  • Isabey D. Steady and pulsatile flow distribution in a multiple branch network with physiological applications. J. Biomech. 1982; 15: 395–404
  • Jedrychowski W., Flak E., Mroz E. The adverse effect of low levels of ambient air pollutants on lung function growth in preadolescent children. Environ. Health Perspect. 1999; 107: 669–674
  • Karl A., Henry F. S., Tsuda A. Low Reynolds number viscous flow in an alveolated duct. J. Biomech. Eng. 2004; 126: 420–429
  • Kim C. S., Hu C. H. Total respiratory tract deposition of fine μ m-sized particles in healthy adults: Empirical equations for sex and breathing patterns. J. Appl. Physiol. 2006; 101: 401–412
  • Kim C. S., Jacques P. A. Respiratory dose of inhaled particles in healthy adults. Phil. Trans. R. Soc. Lond. 2007; 358: 2693–2705
  • Kimbell J. S. Nasal dosimetry of inhaled gases and particles: Where do inhaled agents go in the nose?. Toxicol. Pathol. 2006; 34: 270–273
  • Lee J. W., Goo J. H. Numerical simulation of airflow and inertial deposition of particles in a bifurcating channel of square cross-section. J. Aerosol Med. 1992; 5: 131–154
  • Li A., Ahmadi G. Dispersion and deposition of spherical particles from point sources in a turbulent channel flow. Aerosol Sci. Technol. 1992; 16: 209–226
  • Liu Y., So R. M. C., Zhang C. H. Modeling the bifurcating flow in a human lung airway. J. Biomech. 2002; 35: 465–473
  • Longest P., Xi J. Effectiveness of direct Lagrangian tracking models for simulating nano-particle deposition in the upper airways. Aerosol Sci. Technol. 2007a; 41: 380–397
  • Longest P., Xi J. Computational investigation of particle inertia effects on sub-μ m aerosol deposition in the respiratory tract. J. Aerosol Sci. 2007b; 38: 111–130
  • Ma B., Lutchen K. R. An anatomically based hybrid computational model of the human lung and its application to low frequency oscillatory mechanics. Ann. Biomed. Eng. 2006; 34: 1691–1704
  • Martin R., Wilson J., Anthonisen N. R. Detection of unequal time constants in the lung by xenon technique. Bull. Physiopathol. Respir. 1971; 7: 291–300
  • Martin R. R., Anthonisen N. R., Zutter M. Flow dependence of the intrapulmonary distribution of inspired boluses of 133Xe in smokers and nonsmokers. Clin. Sci. 1972; 43: 319–329
  • Martonen T. B., Yang Y., Xue Q. Z., Zhang Z. Motion of air within the human tracheobronchial tree. Part. Sci. Technol. 1994a; 12: 175–188
  • Martonen T. B., Yang Y., Xue Z. Q. Effects of carinal ridge shapes on lung airstreams. J. Aerosol Sci. Technol. 1994b; 21: 119–136
  • Martonen T. B., Yang Y., Xue Z. Q. Influences of cartilaginous rings on tracheobronchial fluid dynamics. Inhal. Toxicol. 1994c; 6: 185–203
  • Martonen T. B., Guan X., Schreck R. M. Fluid dynamics in airway bifurcations: I. Primary flows. Inhal. Toxicol. 2001a; 13: 261–279
  • Martonen T. B., Guan X., Schreck R. M. Fluid dynamics in airway bifurcations: III. Localized flow conditions. Inhal. Toxicol. 2001b; 13: 291–305
  • Martonen T. B., Zhang Z., Yue G., Musante C. J. 3-D Particle transport within the human upper respiratory tract. J. Aerosol Sci. 2002; 33: 1095–1110
  • Matida E. A., DeHaan W. H., Finlay W. H., Lang C. F. Simulation of particle deposition in an idealized mouth with different small diameter inlets. J. Aerosol Sci. Technol. 2003; 37: 924–932
  • McConnell R., Berhane K., Gilliland F., London S. J., Vora H., Avol E., Gauderman W. J., Margolis H. G., Lurmann F., Thomas D. C., Peters J. M. Air pollution and bronchitic symptoms in Southern California children with asthma. Environ. Health Perspect 1999; 107: 757–760
  • Milic-Emili J., Henderson J. A., Dolovich M. B., Trop D., Kaneko K. Regional distribution of inspired gas in the lung. J. Appl. Physiol. 1966; 21: 749–759
  • National Institute for Public Health and the Environment (RIVM). Multiple path particle dosimetry model (MPPD v 1.0): A model for human and rat airway particle dosimetry. BilthovenThe Netherlands 2002, RIVA Report 650010030
  • Norris G., YoungPong S. N., Koenig J. Q., Larson T. V., Sheppard L., Stout J. W. An association between fine particles and asthma emergency department visits for children in Seattle. Environ. Health Perspect. 1999; 107: 489–493
  • Nowak N., Kakade P. P., Annapragada A. Computational fluid dynamics simulation of airflow and aerosol deposition in the human lungs. Ann. Biomed. Eng. 2003; 31: 374–390
  • Otis A. B., McKerrow C. B., Bartlett R. A., Mead J., McIlroy M. B., Selver-Stone N. J., Radford E. P., Jr. Mechanical factors in distribution of pulmonary ventilation. J. Appl. Physiol. 1956; 8: 427–443
  • Pedley T. J., Sudlow M. F., Milic-Emili J. A non-linear theory of the distribution of pulmonary ventilation. Respirat. Physiol. 1972; 15: 1–38
  • Pope C. A., III, Burnett R. T., Thun M. J., Calle E. E., Krewski D., Ito K., Thurston G. D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J. Am. Med. Assoc. 2002; 287: 1132–1141
  • Richardson L. F. The approximate arithmetical solution by finite differences of physical problems including differential equations, with an application to the stresses in a masonry dam. Philos. Trans. R, Soc, Lond. Ser. A 1910; 210: 307–357
  • Robertson P. C., Anthonisen N. R., Ross D. Effect of inspiratory flow rate on regional distribution of inspired gas. J. Appl. Physiol. 1969; 26: 438–443
  • Robinson R. J., Oldham M. J., Clinkenbeard R. E., Rai P. Experimental and numerical smoke carcinogen deposition in a multi-generation human replica tracheobronchial model. Ann. Biomed. Eng. 2006; 34(3)373–383
  • Roemer W., Hoek G., Brunekreef B., Clench-Aas J., Forsberg B., Pekkanen J., Schutz A. PM10 elemental composition and acute respiratory health effects in European children (PEACE project). Pollution Effects on Asthmatic Children in Europe. Eur. Respir. J. 2000; 15: 553–559
  • Schiller C. F., Gebhart J., Heyder G., Rudolf G., Stahlhofen W. Deposition of monodisperse insoluble aerosol particles in the 0.005 to 0.2 μ m size range within the human respiratory tract. Ann. Occup. Hyg. 1988; 32: 41–49
  • Schroeter J. D., Kimbell J. S., Asgharian B. Analysis of particle deposition in the turbinate and olfactory region using a human nasal computational fluid dynamics model. J. Aerosol Med. 2006; 19: 301–313
  • Schwartz J., Neas L. M. Fine particles are more strongly associated than coarse particles with acute respiratory health effects in schoolchildren. Epidemiology 2000; 11: 6–10
  • Snyder B. D., Dantzker D. R., Jaeger M. J. Flow partitioning in symmetric cascades of branches. J. Appl. Physiol. 1981; 51: 598–606
  • Tippe A., Tsuda A. Recirculating flow in an expanding alveolar model: Experimental evidence of flow-induced mixing of aerosols in the pulmonary acinus. J. Aerosol Sci. 2000; 31: 979–986
  • Tippe A., Perzl M., Li W., Schulz H. Experimental analysis of flow calculations based on HRCT imaging of individual bifurcations. Respir. Physiol. 1999; 117: 181–191
  • Tsuda A., Kamm R., Fredberg J. J. Periodic flow at airways bifurcations: II Flow partitioning. J. Appl. Physiol 1990; 69: 553–561
  • van Ertbruggen C., Hirsch C., Paiva M. Anatomically based three-dimensional model of airways to simulate flow and particle transport using computational dynamics. J. Appl. Physiol. 2005; 98: 970–980
  • Yeh H. C., Schum G. M. Models of human lung airways and their application to inhaled particle deposition. Bull. Math. Biol. 1980; 42: 461–480
  • Zhang C. H., Liu Y., So R. M. C., Phan-Thien N. The influence of inlet velocity profile on three-dimensional three-generation bifurcating flows. Comput. Mech. 2002a; 29: 422–429
  • Zhang Z., Kleinstreuer C. Species heat and mass transfer in a human upper airway model. Int. J. Heat Mass Trans. 2003; 46: 4755–4768
  • Zhang Z., Kleinstreuer C. Airflow structures and nano-particle deposition in a human upper airway model. J. Comp. Phys. 2004; 198: 178–210
  • Zhang Z., Kleinstreuer C., Kim. C. S. Effects of curved inlet tubes on air flow and particle deposition in bifurcating lung models. J. Biomech. 2001; 34: 659–669
  • Zhang Z., Kleinstreuer C., Kim C. S. Cyclic μ m-size particle inhalation and deposition in a triple bifurcation lung airway model. J. Aerosol Sci. 2002b; 33: 257–261
  • Zhang Z., Kleinstreuer C., Kim C. S., Cheng Y. S. Vaporizing micro-droplet inhalation, transport, and deposition in a human upper airway model. J. Aerosol Sci. Technol. 2004; 38: 36–49
  • Zhang Z., Kleinstreuer C., Donohue J. F., Kim C. S. Comparison of micro- and nano-size particle depositions in a human upper airway model. J. Aerosol Sci. 2005; 36: 211–233

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.