Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 21, 2009 - Issue 7
53
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Acute microinstillation inhalation exposure to soman induces changes in respiratory dynamics and functions in guinea pigs

, , , , , , & show all
Pages 648-657 | Received 20 Feb 2008, Accepted 07 Jul 2008, Published online: 01 Jun 2009

References

  • Anzueto, A., Berdine, G. G., Moore, G. T., Gleiser, C., Johnson, D., White, C. D., and Johanson, W. G., Jr. (1986). Pathophysiology of soman intoxication in primates. Toxicol. Appl. Pharmacol. 86:56–68.
  • Anzueto, A., de Lemos R. A., Seidenfeld, J., Moore, G., Hamil, H., Johnson, D., and Jenkinson, S. G. (1990). Acute inhalation toxicity of soman and sarin in baboons. Fundam. Appl. Toxicol. 14:676–687.
  • Bargeton, D., Barres, G., and Gauge, P. (1964). [Pressure–volume relationship in air plethysmography.]. J. Physiol (Paris) 56:282–283.
  • Bates, J., Irvin, C., Brusasco, V., Drazen, J., Fredberg, J., Loring, S., Eidelman, D., Ludwig, M., Macklem, P., Martin, J., Milic-Emili, J., Hantos, Z., Hyatt, R., Lai-Fook, S., Leff, A., Solway, J., Lutchen, K., Suki, B., Mitzner, W., Pare, P., Pride, N., and Sly, P. 2004. The use and misuse of Penh in animal models of lung disease. Am. J. Respir. Cell Mol. Biol. 31:373–374.
  • Bice, D. E., Seagrave, J., and Green, F. H. (2000). Animal models of asthma: Potential usefulness for studying health effects of inhaled particles. Inhal. Toxicol. 12:829–862.
  • Bide, R. W., and Risk, D. J. (2004). Inhalation toxicity in mice exposed to sarin (GB) for 20–720 min. J. Appl. Toxicol. 24:459–467.
  • Buchanan, K. C., Burge, R. R., and Ruble, G. R. (1998). Evaluation of injectable anesthetics for major surgical procedures in guinea pigs. Contemp. Top. Lab. Anim. Sci. 37:58–63.
  • Caranto, G. R., Waibel, K. H., Asher, J. M., Larrison, R. W., Brecht, K. M., Schutz, M. B., Raveh, L., Ashani, Y., Wolfe, A. D., and Maxwell, D. M., (1994). Amplification of the effectiveness of acetylcholinesterase for detoxification of organophosphorus compounds by bis-quaternary oximes. Biochem. Pharmacol. 47:347–357.
  • Chand, N., Nolan, K., Pillar, J., Lomask, M., Diamantis, W., and Sofia, R. D. (1993). Aeroallergen-induced dyspnea in freely moving guinea pigs: Quantitative measurement by bias flow ventilated whole body plethysmography. Allergy 48:230–235.
  • Chang, F. C., Foster, R. E., Beers, E. T., Rickett, D. L., and Filbert, M. G. (1990). Neurophysiological concomitants of soman-induced respiratory depression in awake, behaving guinea pigs. Toxicol. Appl. Pharmacol. 102:233–250.
  • Chary, R., Bocquet, P., and Jayot, R. (1957). [Action of isopropyl methylfluorophosphate on the bronchial musculature of guinea pigs.]. C. R. Seances Soc. Biol. Fil. 151:2099–2101.
  • Chary, R., Bocquet, P., and Jayot, R. (1958). [Action of anticholinesterase compounds on bronchial muscle in guinea pigs; Sensitization to acetylcholine and histamine.]. J. Physiol. (Paris) 50:215–219.
  • Chong, B. T., Agrawal, D. K., Romero, F. A., and Townley, R. G. (1998). Measurement of bronchoconstriction using whole-body plethysmograph: Comparison of freely moving versus restrained guinea pigs. J. Pharmacol. Toxicol. Methods 39:163–168.
  • DeLorenzo, R.A. (2001). Exposed. Signs, symptoms and EMS management of nerve-agent poisoning. JEMS 26:48–57.
  • Drorbaugh, J. E., and Fenn, W. O. (1955). A barometric method for measuring ventilation in newborn infants. Pediatrics 16:81–87.
  • Graham, J. R., Wright, B. S., Rezk, P. E., Gordon, R. K., Sciuto, A. M., and Nambiar, M. P. (2006). Butyrylcholinesterase in guinea pig lung lavage: A novel biomarker to assess lung injury following inhalation exposure to nerve agent VX. Inhal. Toxicol. 18:493–500.
  • Inoue, N. (2003). [Neurological effects of chemical and biological weapons]. Rinsho Shinkeigaku 43:880–882.
  • Jimmerson, V. R., Shih, T. M., Maxwell, D. M., Kaminskis, A., and Mailman, R. B. (1989a). The effect of 2-(o-cresyl)-4H-1:3:2-benzodioxaphosphorin-2-oxide on tissue cholinesterase and carboxylesterase activities of the rat. Fundam. Appl. Toxicol. 13:568–575.
  • Jimmerson, V. R., Shih, T. M., Maxwell, D. M., and Mailman, R. B. (1989b). Cresylbenzodioxaphosphorin oxide pretreatment alters soman-induced toxicity and inhibition of tissue cholinesterase activity of the rat. Toxicol. Lett. 48:93–103.
  • Kadivar, H., and Adams, S. C. (1991). Treatment of chemical and biological warfare injuries: insights derived from the 1984 Iraqi attack on Majnoon Island. Mil. Med. 156:171–177.
  • Karalliedde, L., Gauci, C. A., and Carter, M. (1991). Chemical weapons. Br. Med. J. 302:474.
  • Kassa, J. (1995). Comparison of efficacy of two oximes (HI-6 and obidoxime) in soman poisoning in rats. Toxicology 101:167–174.
  • Kassa, J. (1998). A comparison of the therapeutic efficacy of conventional and modern oximes against supralethal doses of highly toxic organophosphates in mice. Acta Med. (Hradec. Kralove) 41:19–21.
  • Kassa, J., and Bajgar, J. (1998). Changes of acetylcholinesterase activity in various parts of brain following nontreated and treated soman poisoning in rats. Mol. Chem. Neuropathol. 33:175–184.
  • Kassa, J., and Fusek, J. (1998). The positive influence of a cholinergic–anticholinergic pretreatment and antidotal treatment on rats poisoned with supralethal doses of soman. Toxicology 128:1–7.
  • Kassa, J., and Fusek, J. (2000). The influence of anticholinergic drug selection on the efficacy of antidotal treatment of soman-poisoned rats. Toxicology 154:67–73.
  • Kubin, L., and Fenik, V. (2004). Pontine cholinergic mechanisms and their impact on respiratory regulation. Respir. Physiol. Neurobiol. 143:235–249.
  • Kuna, S. T., Smickley, J. S., and Murchison, L. C. (1990). Hypercarbic periodic breathing during sleep in a child with a central nervous system tumor. Am. Rev. Respir. Dis. 142:880–883.
  • Langenberg, J. P., Spruit, H. E., van der Wiel, H.J., Trap, H. C., Helmich, R. B., Bergers, W. W., van Helden, H.P., and Benschop, H. P. (1998). Inhalation toxicokinetics of soman stereoisomers in the atropinized guinea pig with nose-only exposure to soman vapor. Toxicol. Appl. Pharmacol. 151:79–87.
  • Marrs, T. C. (1993). Organophosphate poisoning. Pharmacol. Ther. 58:51–66.
  • Martin, T., and Lobert, S. (2003). Chemical warfare. Toxicity of nerve agents. Crit. Care Nurse 23:15–20.
  • Masuda, N., Takatsu, M., Morinari, H., and Ozawa, T. (1995). Sarin poisoning in Tokyo subway. Lancet 345:1446.
  • Maxwell, D. M., and Brecht, K. M. (1991). The role of carboxylesterase in species variation of oxime protection against soman. Neurosci. Biobehav. Rev. 15:135–139.
  • Maxwell, D. M., Brecht, K. M., and O’Neill, B. L. (1987). The effect of carboxylesterase inhibition on interspecies differences in soman toxicity. Toxicol. Lett. 39:35–42.
  • Mergoni, M., and Rossi, A. (2001). [Physiopathology of acute respiratory failure in COPD and asthma]. Minerva Anestesiol. 67:198–205.
  • Mitzner, W., and Tankersley, C. (2003). Interpreting Penh in mice. J. Appl. Physiol. 94:828–831.
  • Nambiar, M. P., Moran, S. T., Richards, S. M., Gordon, R. K., and Sciuto, A. M. (2007a). A simple method for endotracheal placement of an inhalation tube in guinea pigs to assess lung injury following chemical exposure. Toxicol. Mech. Methods 17:385–392.
  • Nambiar, M. P., Wright, B. S., Moran, S. T., Richards, S. M., Gordon, R. K., and Sciuto, A. M. (2006b). Development of a microinstillation model of inhalation exposure to assess lung injury following exposure to toxic chemicals and nerve agents. Toxicol. Mech. Methods 16:295–306.
  • Niven, A. S., and Roop, S. A. (2004). Inhalational exposure to nerve agents. Respir. Care Clin. North Am. 10:59–74.
  • Nogues, M. A., Roncoroni, A. J., and Benarroch, E. (2002). Breathing control in neurological diseases. Clin. Auton. Res. 12:440–449.
  • Okumura, T., Suzuki, K., Fukuda, A., Kohama, A., Takasu, N., Ishimatsu, S., and Hinohara, S. (1998a). The Tokyo subway sarin attack: Disaster management, Part 1: Community emergency response. Acad. Emerg. Med. 5:613–617.
  • Okumura, T., Suzuki, K., Fukuda, A., Kohama, A., Takasu, N., Ishimatsu, S., and Hinohara, S. (1998b). The Tokyo subway sarin attack: Disaster management, Part 2: Hospital response. Acad. Emerg. Med. 5:618–624.
  • Okumura, T., Takasu, N., Ishimatsu, S., Miyanoki, S., Mitsuhashi, A., Kumada, K., Tanaka, K., and Hinohara, S. (1996). Report on 640 victims of the Tokyo subway sarin attack. Ann. Emerg. Med. 28:129–135.
  • Sciuto, A. M., Lee, R. B., Forster, J. S., Cascio, M. B., Clapp, D. L., and Moran, T. S. (2002). Temporal changes in respiratory dynamics in mice exposed to phosgene. Inhal. Toxicol. 14:487–501.
  • Taysse, L., Daulon, S., Delamanche, S., Bellier, B., and Breton, P. (2006). Protection against soman-induced neuropathology and respiratory failure: A comparison of the efficacy of diazepam and avizafone in guinea pig. Toxicology 225:25–35.
  • Thorne, P. S., and Karol, M. H. (1988). Assessment of airway reactivity in guinea pigs: Comparison of methods employing whole body plethysmography. Toxicology 52:141–163.
  • Vale, A. (2005). What lessons can we learn from the Japanese sarin attacks? Przegl. Lek. 62:528–532.
  • Vieillard-Baron, A., and Jardin, F. (2003). The issue of dynamic hyperinflation in acute respiratory distress syndrome patients. Eur. Respir. J. Suppl. 42:43s–47s.
  • Vieillard-Baron, A., Prin, S., Schmitt, J. M., Augarde, R., Page, B., Beauchet, A., and Jardin, F. (2002). Pressure–volume curves in acute respiratory distress syndrome: Clinical demonstration of the influence of expiratory flow limitation on the initial slope. Am. J. Respir. Crit Care Med. 165:1107–1112.
  • Wright, B. S., Rezk, P. E., Graham, J. R., Steele, K. E., Gordon, R. K., Sciuto, A. M., and Nambiar, M. P. (2006). Acute lung injury following inhalation exposure to nerve agent VX in guinea pigs. Inhal. Toxicol. 18:437–448.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.