Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 21, 2009 - Issue 4
1,616
Views
98
CrossRef citations to date
0
Altmetric
Research Article

Computational Modeling of Aerosol Deposition in Respiratory Tract: A Review

Pages 262-290 | Received 29 Jul 2008, Accepted 03 Sep 2008, Published online: 01 Apr 2009

REFERENCES

  • S. Anjilvel, and B. Asgharian. (1995). A multi-path model of particle deposition in the rat lung. Fundam. Appl. Toxicol. 58:41–50.
  • B. Asgharian, R. Wood, and R. B. Schlesinger. (1995). Empirical modeling of particle deposition in alveolar region of the lungs: A basis for interspecies extrapolation. Fundam. Appl. Toxicol. 27:232–238.
  • R. Baker, and M. Dixon. (2006). The retention of tobacco smoke constituents in the human respiratory tract. Inhal. Toxicol. 17:255–294.
  • I. Balashazy, and W. Hofmann. (1993). Particle deposition in airway bifurcation: I. Inspiratory flow. J. Aerosol. Sci. 24:745–772.
  • I. Balashazy, and W. Hofmann. (1993). Particle deposition in airway bifurcation: II. Expiratory flow. J. Aerosol. Sci. 24:773–786.
  • I. Balashazy, and W. Hofmann. (1995). Deposition of aerosols in asymmetric airway bifurcations. J. Aerosol. Sci. 26:273–292.
  • J. M. Beeckmans. (1965). The deposition of aerosol in respiratory tract: (1) Mathematical analysis and comparison with experimental data. Can. J. Physiol. Pharmacol. 43:157–172.
  • D. M. Broday, and P. G. Georgopoulos. (2001). Growth and deposition of hygroscopic particulate matter in the human lungs. Aerosol Sci. Technol. 34:144–159.
  • D. M. Broday, and R Robinson. (2003). Application of cloud dynamics to dosimetry of cigarette smoke particles in the lungs. Aerosol Sci. Technol. 37:510–527.
  • Y.-S. Cheng, Y. Zhou, and B. T. Chen. (1999). Particle deposition in a cast of human oral airways. Aerosol Sci. Technol. 31:286–300.
  • R. E. Clinkenbeard, R. Parathasarathy, M. C. Altan, K.-H Tan, S.-M Park, and R. H. Crawford. (2002). Replication of human tracheobronchial hollow airway models using a selective laser sintering rapid prototyping technique. AIHA J. 63:141–150.
  • C. Darquenne. (2001). A realistic two-dimensional model of aerosol transport and deposition in the alveolar zone of human lung. J. Aerosol Sci. 32:1161–1174.
  • C. Darquenne, and M. Paiva. (1994). One-dimensional simulation of aerosol transport and deposition in human lung. J. Appl. Physiol. 77 (6):2889–2898.
  • C. Darquenne, and M. Paiva. (1996). Two- and three-dimensional simulations of aerosol transport and deposition in the alveolar zone of human lung. J. Appl. Physiol 80:1401–1414.
  • M. J. Egan, and W. Nixon. (1985). A model of aerosol deposition in the lung for use in inhalation dose assessments. Radiat. Protect. Dosim. 11 (1):5–17.
  • M. J. Egan, W. Nixon, W. N. I. Robinson, A. C. James, and R. F. Phalen. (1989). Inhaled aerosol transport deposition calculations for ICRP Task Group. J. Aerosol Sci. 20:1305–1308.
  • W. Findeisen. (1935). Uber das Absetzen Kleiner in der Luft seuspendierten Teilchen in der menschlichen Lunge bei der Amtung. Pflugers Arch. Ges. Physiol. 236:367–379.
  • S. K. Friedlander. (2000). Smoke, dust and haze: Fundamentals of aerosol dynamics, 2nd ed.New York: Oxford University Press.
  • B. Haefeli-Bleuer, and E. R. Weibel. (1988). Morphometry of human pulmonary acinus. Anat. Rec. 220:401–414.
  • M. Hardin, and R. Kahn. (2008). Aerosol and climate change. Earth Observatory NASAhttp://earthobservatory.nasa.gov/Library/Aerosols/(accessed January 2008)
  • F. S. Henry, J. P. Butler, and A. Tsuda. (2002). Kinematically irreversible acinar flow: A departure from classical dispersive aerosol transport theory. J. Appl. Physiol. 92:835–845.
  • J. Heyder, J. Gebhart, G. Rudolf, C. F. Schiller, and W. Stahlhofen. (1986). Deposition of particles in human respiratory tract in the size range 0.005–15 μ m. J. Aerosol Sci. 17 (5):811–825.
  • J. Heyder, and G. Rudolf. (1984). Mathematical models of particle deposition in the human respiratory tract. J. Aerosol Sci. 15 (6):697–707.
  • W. C. Hinds. (1999). Aerosol technology, 2nd edNew York: John Wiley &Sons.
  • W. Hofmann, and I. Balashazy. (1991). Particle deposition within airway bifurcation—Solution of 3D Navier–Stokes equation. Radiat. Protect. Dosim. 38:57–63.
  • K. Horsfield, and G Cumming. (1968). Morphology of bronchial tree in man. J. Appl. Physiol. 24 (3):373–383.
  • International Commission on Radiological Protection. (1994). Human respiratory tract model for radiological protection. ICRP publication 66. Pergamon Press. Oxford, London.
  • S. T. Jayaraju, M. Brouns, S. Verbanck, and C. Lacor. (2007). Fluid flow and particle deposition analysis in a realistic extrathoracic airway model using unstructured grids. J. Aerosol Sci. 38:494–508.
  • N. S. Jarvis, and A. Birchall. (1994). LUDEP 1.0, a personal computer program to implement the new ICRP respiratory tract model. Radiat. Protect. Dosim. 53 (1–4):191–193.
  • N. S. Jarvis, A. Birchall, A. C. James, M. R. Bailey, and M.-D Dorrian. (2000) LUDEP 2.07: Personal computer program for calculating internal doses using the ICRP Publication 66 Respiratory Tract Model. http://www.hpa.org.uk/radiation/publications/software/sr287/index.htm.
  • C. S. Kim, P. DeWitt, and T. R. Gerrity. (1996). Assessment of regional deposition of inhaled particles in human lung by serial bolus delivery method. J. Appl. Physiol. 81:2203–2213.
  • L. Koblinger, and W. Hafmann. (1985). Analysis of human lung morphometric data for stochastic aerosol deposition calculations. Phys. Med. Biol. 30:541–556.
  • H. Kitaoka, R. Takaki, and B. Suki. (1999). A three dimensional model for human airway tree. J. Appl. Physiol. 76 (6):2207–2217.
  • H. D. Landahl. (1950). On the removal of airborne droplets by human respiratory tract. I. The lung. Bull. Math. Biophys. 12:43–56.
  • A. Li, and G. Ahmadi. (1995). Computer simulation of particle deposition in the upper tracheobronchial tree. Aerosol Sci. Technol. 23:201–223.
  • W.-I. Li, M. Perzl, J. Heyder, R. Langer, J. D. Brain, K.-H. Englmeier, R. W. Niven, and D. A. Edwards. (1996). Aerodynamics and aerosol particle deaggregation phenomena in model oral-pharyngeal cavities. J. Aerosol Sci. 27 (8):1269–1286.
  • Z. Li, C. Kleinstreuer, and Z. Zhang. (2007). Particle deposition in human tracheobronchial airways due to transient inspiratory flow patterns. J. Aerosol Sci. 38:625–644.
  • C.-L. Lin, M. H. Tawhai, G. McLennan, and E. A. Hoffman. (2007). Characteristics of the turbulent laryngeal jet and its effect on airflow in human intra-thoracic airways. Respir. Physiol. Neurobiol. 157:295–309.
  • P. W. Longest, and C. Kleinstreuer. (2005). Computational models for simulating multicomponent aerosol evaporation in upper respiratory tract. Aerosol Sci. Technol. 39:124–138.
  • P. W. Longest, and J. Xi. (2007). Effectiveness of direct Lagrangian tracking models for simulating nanoparticle deposition in upper airways. Aerosol Sci. Technol. 41:380–397.
  • E. A. Matida, W. H. Finlay, C. F. Lange, and B. Grgic. (2004). Improved numerical simulation of aerosol deposition in an idealized mouth–throat. J. Aerosol Sci. 35:1–19.
  • D. W. McRobbie, S. Pritchard, and R. A. Quest. (2003). Studies of the human oropharyngeal airspaces using magnetic resonance imaging. J. Aerosol Med. 16 (4):401–415.
  • Mimics. (2007). Developed by Materialise: www.materialise.com (accessed November 2007).
  • W. J.G.D. Muller, G. D. Hess, and P. W. Scherer. (1990). A model of cigarette smoke particle deposition. Am. Ind. Hyg. Assoc. J. 51:245–256.
  • C. D. Murray. (1926). The physiological principle of minimum work applied to the angle of branching of arteries. J. Gen. Physiol. 9 (6):835–841.
  • C. Mitsakou, C. Helmis, and C. Housiada. (2005). Eulerian modeling of lung deposition with sectional representation of aerosol dynamics. J. Aerosol Sci. 36:75–94.
  • P. E. Morrow, D. V. Bates, B. R. Fis, T. F. Hatch, and T. T. Mercer. (1966). International commission on radiological protection task group on lung dynamics; deposition and retention models for internal dosimetry of human respiratory tract. Health Phys. 12:173–207.
  • P. E. Morrow, and C. P. Yu. (1993). Models of aerosol behavior in airways and alveoli. in Aerosol medicine. eds. F. Moren, M. B. Dolovich, M. T. Newhouse, and S. P. Newman. 157–193, 2nd ed.Elsevier, Amsterdam, .
  • NCRP(1997). Deposition, retention and dosimetry of inhaled radioactive substances. National Council on Radiation Protection and Measurements, Bethesda, MD: 1997. NCRP Report No. 125.
  • National Library of Medicine/National Institutes of Health(2007). Visible Human Project. http://www.nlm.nih.gov/research/visible (accessed October 2007).
  • W. Nixon, and M. J. Egan. (1987). Modeling study of regional deposition of inhaled aerosols with special reference to effects of ventilation asymmetry. J. Aerosol Sci. 18 (5):563–579.
  • N. Nowak, P. P. Kakade, and A. V. Annapragada. (2003). Computational fluid dynamics of simulation of airflow and aerosol deposition in human lungs. Ann. Biomed. Eng. 31:374–390.
  • S. S. Park, and A. S. Wexler. (2007a). Particle deposition in pulmonary region of the human lung: A semi-empirical model of single breath transport and deposition. J. Aerosol Sci. 38 (2):228–245.
  • S. S. Park, and A. S. Wexler. (2007b). Particle deposition in pulmonary region of the human lung: Multiple breath aerosol transport and deposition. J. Aerosol Sci. 38:509–519.
  • R. F. Phalen, R. G. Cuddihu, G. L. Fisher, O. R. Moss, R. B. Schlesinger, D. L. Swift, and H. C. Yeh. (1991). Main features of proposed NCRP respiratory tract model. Radiat. Prot. Dosim. 38 (1/3):179–184.
  • O. G. Raabe, H. C. Yeh, G. M. Schum, and R. F. Phalen. (1976). Tracheobronchial geometry: Human, dog, rat, hamster: A compilation of selected data from the project respiratory tract deposition models, report LF-53. http://mae.ucdavis.edu/wexler/lungs/LF53-Raabe/ (accessed November 2007).
  • R. J. Robinson, and C. P. Yu. (2001). Deposition of cigarette smoke particles in the human respiratory tract. Aerosol Sci. Technol. 34 (2):202–215.
  • R. J. Robinson, M. J. Oldham, R. E. Clinkenbeard, and P. Rai. (2006). Experimental and numerical smoke deposition in a multi-generation human replica tracheobronchial model. Ann. Biomed. Eng. 34 (3):373–383.
  • G. Rudolf, R. Kobrich, and W Stahlhofen. (1990). Modeling and algebraic formulation of regional aerosol deposition in man. J. Aerosol Sci 21 (suppl. 1):S403–S406.
  • G. Rudolf, J. Gebhart, J. Heyder, G. Scheuch, and W. Stahlhofen. (1983). Modelling the deposition of aerosol particles in the human respiratory tract. J. Aerosol Sci 14 (3):188–192.
  • G. Rudolf, J. Gebhart, J. Heyder, C. F. Schiller, and W. Stahlhofen. (1986). An empirical formula describing aerosol deposition in man for any particle size. J. Aerosol Sci. 17 (3):350–355.
  • V. Sauret, P. M. Halson, I. W. Brown, J. S. Fleming, and A. G. Bailey. (2002). Study of the three dimensional geometry of central conducting airways in man using computed tomographic (CT) images. J. Anat. 200:123–134.
  • J. S. Shirolkar, C. F. M. Coimbra, and M. Q. McQuay. (1996). Fundamental aspects of modeling turbulent particle dispersion in dilute flows. Prog. Energy and Combust. Sci. 22:363–399.
  • Simpleware(2007) Developed by Simpleware, Inc. www.simpleware.com (accessed November 2007).
  • T. R. Sosnowski, A. Moskal, and L. Gradon. (2006). Dynamics of oropharyngeal aerosol transport and deposition with the realistic flow pattern. Inhal. Toxicol. 18:773–780.
  • T. R. Sosnowski, A. Moskal, and L. Gradon. (2007). Mechanisms of aerosol particle deposition in oro-pharynx under non-steady airflow. Ann. Occup. Hyg. 51 (1):19–25.
  • K. W. Stapleton, E. Guentsch, M. K. Hoskinson, and W. H. Finlay. (2000). On the suitability of k–ε turbulence modeling for aerosol deposition in mouth and throat: A comparison with experiment. J. Aerosol Sci. 31 (6):739–749.
  • W. Stahlhofen, J. Gebhart, J. Heyder, and G. Scheuch. (1983). New regional deposition data of human respiratory tract. J. Aerosol Sci. 14:186–188.
  • W. Stahlhofen, G. Rudolf, and A. C. James. (1989). Inter-comparison of experimental regional aerosol deposition data. J. Aerosol Med. 2:285–308.
  • B. O. Stuart. (1984). Deposition and clearance of inhaled particles. Environ. Health Perspect. 55:369–390.
  • N. Takano, N. Nishida, M. Itoh, N. Hyo, and Y. Majima. (2006). Inhaled particle deposition in unsteady-state respiratory flow at a numerically constructed model of the human larynx. J. Aerosol Med. 19 (3):314–328.
  • A. Tippe, and A. Tsuda. (1999). Recirculating flow in an expanding alveolar model: experimental evidence of flow-induced mixing of aerosols in the pulmonary acinus. J. Aerosol Sci. 31 (8):979–986.
  • A. Tsuda, F. S. Henry, and J. P. Butler. (1995). Chaotic mixing of alveolated duct flow in rhythmically expanding pulmonary acinus. J. Appl. Physiol. 79 (3):1055–1063.
  • A. Tsuda, R. A. Rogers, P. E. Hydon, and J. P. Butler. (2002). Chaotic mixing deep in the lung. Proc. Natl. Acad. Sci. USA 99 (15):10173–10178.
  • University of Virginia(2007). Dynamic Images of human lung. http://imaging.med.virginia.edu/hypaerpolarized/dynamic2.htm (accessed October 2007).
  • U.S. Environmental Protection Agency(2004). Air quality criteria for particulate matter,Vol. II. Washington, DC: U.S. EPA.
  • R. de Winter-Sorkina, and F. R. Cassee. (2002). From concentration to dose: Factors influencing airborne particulate matter deposition in humans and rats. National Institute of Public Health and the Environment (RIVM), the Netherlands. Report 650010031/2002. http://www.rivm.nl/bibliotheek/rapporten/650010031.pdf (accessed December 2007).
  • C. van Ertbruggen, C. Hirsch, and M. Paiva. (2005). Anatomically based three dimensional model airways to simulate flow and particle transport using computational fluid dynamics. J. Appl. Physiol. 98:970–980.
  • E. R. Weibel. (1963). Morphometry of human lung. New York: Academic Press.
  • B. R. Wiggs, R. Moreno, J. C. Hogg, C. Hilliam, and P. D. Pare. (1990). A model of mechanics of airway narrowing. J. Appl. Physiol. 69 (3):849–860.
  • K. Willeke, and P. A. Baron. >(1993). Aerosol measurement, principles, techniques and applications. New York: John Wiley & Sons.
  • H. C. Yeh, R. F. Phalen, and O. G. Raab. (1976). Factors influencing the deposition of inhaled particles. Environ. Health Perspect. 15:147–156.
  • H. Yeh, and G. M. Schum. (1980). Models of human lung airways and their application to inhaled particle deposition. Bull. Math. Biol. 42:461–480.
  • H. C. Yeh, R. G. Cuddihy, R. F. Phalen, and I.-Y. Change. (1996). Comparisons of calculated respiratory tract deposition of particles based on proposed NCRP model and the new ICRP66 model. Aerosol Sci. Technol. 25:134–140.
  • C. P. Yu. (1978). Exact analysis of aerosol deposition during steady breathing. Powder Technol. 21:55–62.
  • Z. Zhang, C. Kleinstreuer, and C. S. Kim. (2002a). Cyclic micron-size particle inhalation and deposition in a triple bifurcation lung airway model. J. Aerosol Sci. 33:257–281.
  • Z. Zhang, C. Kleinstreuer, and C. S. Kim. (2002b). Aerosol transport and deposition in a triple bifurcation bronchial airway model with local tumors. Inhal. Toxicol. 14:111–1133.
  • Z. Zhang, C. Kleinstreuer, and C. S. Kim. (2002c). Micro-particle transport and deposition in human oral airway model. J. Aerosol Sci. 33 (2):1635–1652.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.