Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 30, 2018 - Issue 13-14
567
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Involvement of PM2.5-bound protein and metals in PM2.5-induced allergic airway inflammation in mice

ORCID Icon, ORCID Icon, , , ORCID Icon, , , , , & show all
Pages 498-508 | Received 15 Aug 2018, Accepted 18 Dec 2018, Published online: 08 Mar 2019

References

  • Chen L, Wang T, Zhang JY, et al. (2009). Toll-like receptor 4 relates to lipopolysaccharide-induced mucus hypersecretion in rat airway. Arch Med Res 40:10–17.
  • Cui W, Taub DD, Gardner K. (2007). qPrimerDepot: a primer database for quantitative real time PCR. Nucleic Acids Res 35:D805–9.
  • Dockery DW, Pope CA, Xu X, et al. (1993). An association between air pollution and mortality in six US cities. N Engl J Med 329:1753–9.
  • Eisenbarth SC, Piggot DA, Huleatt JW, et al. (2002). Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J Exp Med 196:1645–51.
  • Evans CM, Kim K, Tuvim MJ, Dickey BF. (2009). Mucus hypersecretion in asthma: causes and effects. Curr Opin Pulm Med 15:4–11.
  • Evans CM, Raclawska DS, Ttofali F, et al. (2015). The polymeric mucin Muc5ac is required for allergic airway hyperreactivity. Nat Commun 6:6281.
  • Gavett SH, Haykal-Coates N, Copeland LB, et al. (2003). Metal composition of ambient PM2.5 influences severity of allergic airways disease in mice. Environ Health Perspect 111:1471–7.
  • Halliwell B, Gutteridge JMC. 2015. Free radicals in biology and medicine. 5th ed. Oxford, UK: Oxford University Press.
  • He M, Ichinose T, Yoshida S, et al. (2010). Urban particulate matter in Beijing, China, enhances allergen-induced murine lung eosinophilia. Inhal Toxicol 22:709–18.
  • Hosoki K, Aguilera-Aguirre L, Brasier AR, et al. (2016). Facilitation of allergic sensitization and allergic airway inflammation by pollen-induced innate neutrophil recruitment. Am J Respir Cell Mol Biol 54:81–90.
  • Kang JH, Hwang SM, Chung IY. (2015). S100A8, S100A9 and S100A12 activate airway epithelial cells to produce MUC5AC via extracellular signal-regulated kinase and nuclear factor-κB pathways. Immunology 144:79–90.
  • Knowles MR, Boucher RC. (2002). Mucus clearance as a primary innate defense mechanism for mammalian airways. J Clin Invest 109:571–7.
  • Lidén C, Andersson N, Julander A, Matura M. (2016). Cobalt allergy: suitable test concentration, and concomitant reactivity to nickel and chromium. Contact Dermatitis 74:360–7.
  • Miyabara Y, Yanagisawa R, Shimojo N, et al. (1998). Murine strain differences in airway inflammation caused by diesel exhaust particles. Eur Respir J 11:291–8.
  • Miyano H, Toyo’oka T, Imai K. (1985). Further studies on the reaction of amines and proteins with 4-fluoro-7-nitrobenzo-2-oxa-1,3-diazole. Anal Chim Acta 170:81–7.
  • Murakami I, Zhang R, Kubo M, et al. (2015). Rebamipide suppresses mite-induced asthmatic responses in NC/Nga mice. Am J Physiol Lung Cell Mol Physiol 309:L872–8.
  • Newby DE, Mannucci PM, Tell GS, et al. (2015). Expert position paper on air pollution and cardiovascular disease. Eur Heart J 36:83–93b.
  • Ogino K, Nagaoka K, Okuda T, et al. (2017). PM2.5-induced airway inflammation and hyperresponsiveness in NC/Nga mice. Environ Toxicol 32:1047–54.
  • Ogino K, Takahashi N, Kubo M, et al. (2014a). Inflammatory airway responses by nasal inoculation of suspended particulate matter in NC/Nga mice. Environ Toxicol 29:642–54.
  • Ogino K, Zhang R, Takahashi H, et al. (2014b). Allergic airway inflammation by nasal inoculation of particulate matter (PM2.5) in NC/Nga mice. PLoS One 9:e92710.
  • Okuda T, Isobe R, Nagai Y, et al. (2015). Development of a high-volume PM2.5 particle sampler using impactor and cyclone techniques. Aerosol Air Qual Res 15:759–67.
  • Pope CA. (1989). Respiratory disease associated with community air pollution and a steel mill, Utah Valley. Am J Public Health 79:623–8.
  • Pope CA, Thun MJ, Namboodiri MM, et al. (1995). Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. Am J Respir Crit Care Med 151:669–74.
  • Raaschou-Nielsen O, Andersen ZJ, Beelen R, et al. (2013). Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol 14:813–22.
  • Raaschou-Nielsen O, Beelen R, Wang M, et al. (2016). Particulate matter air pollution components and risk for lung cancer. Environ Int 87:66–73.
  • Rose MC, Voynow JA. (2006). Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol Rev 86:245–78.
  • Schmidt M, Goebeler M. (2015). Immunology of metal allergies. J Dtsch Dermatol Ges 13:653–60.
  • Schuh JM, Blease K, Hogaboam CM. (2002). CXCR2 is necessary for the development and persistence of chronic fungal asthma in mice. J Immunol 168:1447–56.
  • Schuijis MJ, Willart MA, Vergote K, et al. (2015). Farm dust and endotoxin protect against allergic through A20 induction in lung epithelial cells. Science 349:1106–10.
  • Schwartz J. (1994). Air pollution and daily mortality: a review and meta analysis. Environ Res 64:36–52.
  • Schwarze PE, Ovrevik J, Låg M, et al. (2006). Particulate matter properties and health effects: consistency of epidemiological and toxicological studies. Hum Exp Toxicol 25:559–79.
  • Shah ASV, Langrish JP, Nair H, et al. (2013). Global association of air pollution and heart failure: a systematic review and meta-analysis. Lancet 382:1039–48.
  • Sharry JM, Shalaby KH, Marchica C, et al. (2014). Concomitant exposure to ovalbumin and endotoxin augments airway inflammation but not airway hyperresponsiveness in a murin model of asthma. PLoS One 9:e98648.
  • Shibamori M, Ogino K, Kambayashi Y, Ishiyama H. (2006). Intranasal mite allergen induces allergic asthma-like responses in NC/Nga mice. Life Sci 78:987–94.
  • Song KS, Kim HJ, Kim K, et al. (2009). Regulator of G-protein signaling 4 suppresses LPS-induced MUC5AC overproduction in the airway. Am J Respir Cell Mol Biol 41:40–9.
  • Takemoto K, Ogino K, Shibamori M, et al. (2007). Transiently, paralleled upregulation of arginase and nitric oxide synthase and the effect of both enzymes on the pathology of asthma. Am J Physiol Lung Cell Mol Physiol 293:L1419–26.
  • Teran LM. (2000). CCL chemokines and asthma. Immunol Today 21:235–42.
  • Tournoy KG, Kips JC, Schou C, Pauwels RA. (2000). Airway eosinophilia is not a requirement for allergen-induced airway hyperresponsiveness. Clin Exp Allergy 30:79–85.
  • Ueda K, Nitta H, Odajima H. (2010). The effects of weather, air pollutants, and Asian dust on hospitalization for asthma in Fukuoka. Environ Health Prev Med 15:350–7.
  • Val S, Belade E, George I, et al. (2012). Fine PM induce airway MUC5AC expression through the autocrine effect of amphiregulin. Arch Toxicol 86:1851–9.
  • Walters DM, Breysse PN, Wills-Karp M. (2001). Ambient urban Baltimore particulate-induced airway hyperresponsiveness and inflammation in mice. Am J Respir Crit Care Med 164:1438–43.
  • Wang X, Li Y, Luo D, et al. (2017). Lyn regulates mucus secretion and MUC5AC via the STAT6 signaling pathway during allergic airway inflammation. Sci Rep 7:42675.
  • Wang T, Moreno-Vinasco L, Huang Y, et al. (2008). Murine lung responses to ambient particulate matter: genomic analysis and influence on airway hyperresponsiveness. Environ Health Perspect 116:1500–8.
  • Wang X, Spandidos A, Wang H, Seed B. (2012). PrimerBank: a PCR primer database for quantitative gene expression analysis, 2012 update. Nucleic Acids Res 40:D1144–9.
  • Xiao M, Zhong H, Xia L, et al. (2017). Pathophysiology of mitochondrial lipid oxidation: role of 4-hydroxynonenal (4-HNE) and other bioactive lipids in mitochondria. Free Radic Biol Med 111:316–27.
  • Young MT, Sandler DP, DeRoo LA, et al. (2014). Ambient air pollution exposure and incident adult asthma in a nationwide cohort of U.S. women. Am J Respir Crit Care Med 190:914–21.
  • Zhang X, Zhong W, Meng Q, et al. (2015). Ambient PM2.5 exposure exacerbates severity of allergic asthma in previously sensitized mice. J Asthma 52:785–94.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.