Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 31, 2019 - Issue 6
308
Views
23
CrossRef citations to date
0
Altmetric
Research Articles

Computational investigation of dust mite allergens in a realistic human nasal cavity

, ORCID Icon, ORCID Icon, , , , & ORCID Icon show all
Pages 224-235 | Received 11 Jan 2019, Accepted 17 Jul 2019, Published online: 20 Aug 2019

References

  • Abouali O, Keshavarzian E, Ghalati PF, Faramarzi A, Ahmadi G, Bagheri MH. 2012. Micro and nanoparticle deposition in human nasal passage pre and post virtual maxillary sinus endoscopic surgery. Resp Physiol Neurobi. 181:335–345.
  • Anthony TR, Flynn MR, Eisner A. 2004. Evaluation of facial features on particle inhalation. Ann Occup Hyg. 49:179–193.
  • A scanning electron microscopic study of the embryonic development of the house dust mite, Dermatophagoides farinae (Pyroglyphidae, Actinotrichida) from blastula to the hatching of the larva. Institute of Physics Conference Series; 1988.
  • Bailie N, Hanna B, Watterson J, Gallagher G. 2009. A model of airflow in the nasal cavities: implications for nasal air conditioning and epistaxis. Am J Rhinol Allergy. 23:244–249.
  • Cannon DE, Frank DO, Kimbell JS, Poetker DM, Rhee JS. 2013. Modeling nasal physiology changes due to septal perforations. Otolaryngol Head Neck Surg. 148:513–518.
  • Chen XB, Lee HP, Chong VFH, Wang DY. 2011. Aerodynamic characteristics inside the rhino-sinonasal cavity after functional endoscopic sinus surgery. Am J Rhinol Allergy. 25:388–392.
  • Cheng Y-S, Zhou Y, Chen BT. 1999. Particle deposition in a cast of human oral airways. Aerosol Sci Technol. 31:286–300.
  • Cheng YS, Holmes TD, Gao J, Guilmette RA, Li S, Surakitbanharn Y, Rowlings C. 2001. Characterization of nasal spray pumps and deposition pattern in a replica of the human nasal airway. J Aerosol Med. 14:267–280.
  • Colloff MJ. 2009. Dust mite allergens. Dust mites. Springer; p. 273–328
  • Dong J, Shang Y, Tian L, Inthavong K, Tu J. 2018. Detailed deposition analysis of inertial and diffusive particles in a rat nasal passage. Inhal Toxicol. 30:29–39.
  • Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, et al. 2012. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging. 30:1323–1341.
  • Gabitto J, Tsouris C. 2008. Drag coefficient and settling velocity for particles of cylindrical shape. Powder Technol. 183:314–322.
  • Garcia GJ, Bailie N, Martins DA, Kimbell JS. 2007. Atrophic rhinitis: a CFD study of air conditioning in the nasal cavity. J Appl Physiol. 103:1082–1092.
  • Ge Q, Li X, Inthavong K, Tu J. 2013. Numerical study of the effects of human body heat on particle transport and inhalation in indoor environment. Build Environ. 59:1–9.
  • Ge QJ, Inthavong K, Tu JY. 2012. Local deposition fractions of ultrafine particles in a human nasal-sinus cavity CFD model. Inhal Toxicol. 24:492–505.
  • Ghalati PF, Keshavarzian E, Abouali O, Faramarzi A, Tu J, Shakibafard A. 2012. Numerical analysis of micro-and nano-particle deposition in a realistic human upper airway. Comput Biol Med. 42:39–49.
  • Hahn I, Scherer PW, Mozell MM. 1993. Velocity profiles measured for airflow through a large-scale model of the human nasal cavity. J Appl Physiol. 75:2273–2287.
  • Haider A, Levenspiel O. 1989. Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol. 58:63–70.
  • Hood CM, Schroter RC, Doorly DJ, Blenke EJ, Tolley NS. 2009. Computational modeling of flow and gas exchange in models of the human maxillary sinus. J Appl Physiol. 107:1195–1203.
  • Inthavong K, Mouritz AP, Dong JL, Tu JY. 2013. Inhalation and deposition of carbon and glass composite fibre in the respiratory airway. J Aerosol Sci. 65:58–68.
  • Inthavong K, Tu J, Ahmadi G. 2009. Computational modelling of gas-particle flows with different particle morphology in the human nasal cavity. J Comput Multiphase Flows. 1:57–82.
  • Inthavong K, Wen H, Tian ZF, Tu JY. 2008. Numerical study of fibre deposition in a human nasal cavity. J Aerosol Sci. 39:253–265.
  • Inthavong K, Wen J, Tu J, Tian Z. 2009. From CT scans to CFD modelling–fluid and heat transfer in a realistic human nasal cavity. Eng Appl Comput Fluid Mech. 3:321–335.
  • Inthavong K, Zhang K, Tu J. 2011. Numerical modelling of nanoparticle deposition in the nasal cavity and the tracheobronchial airway. Comp Methods Biomech Biomed Eng. 14:633–643.
  • Kelly J, Prasad A, Wexler A. 2000. Detailed flow patterns in the nasal cavity. J Appl Physiol. 89:323–337.
  • Kelly JT, Asgharian B, Kimbell JS, Wong BA. 2004. Particle deposition in human nasal airway replicas manufactured by different methods. Part I: Inertial regime particles. Aerosol Sci Technol. 38:1063–1071.
  • Keyhani K, Scherer PW, Mozell MM. 1997. A numerical model of nasal odorant transport for the analysis of human olfaction. J Theor Biol. 186:279–301.
  • Kikinis R, Pieper SD, Vosburgh KG. 2014. 3D Slicer: a platform for subject-specific image analysis, visualization, and clinical support. Intraoperative imaging and image-guided therapy. USA: Springer; p. 277–289.
  • King Se CM, Inthavong K, Tu J. 2010. Inhalability of micron particles through the nose and mouth. Inhal Toxicol. 22:287–300.
  • Kulkarni P, Baron PA, Willeke K. 2011. Aerosol measurement: principles, techniques, and applications. John Wiley & Sons p. 507–547.
  • Kumar H, Jain R, Douglas RG, Tawhai MH. 2016. Airflow in the human nasal passage and sinuses of chronic rhinosinusitis subjects. PloS One. 11:e0156379.
  • Lee KB, Jeon YS, Chung S-K, Kim SK. 2016. Effects of partial middle turbinectomy with varying resection volume and location on nasal functions and airflow characteristics by CFD. Comput Biol Med. 77:214–221.
  • Morgan KT, Monticello TM. 1990. Airflow, gas deposition, and lesion distribution in the nasal passages. Environ Health Perspect. 85:209.
  • Morris JB, Shusterman DJ. 2016. Toxicology of the nose and upper airways. CRC Press p. 5–8.
  • Morsi S, Alexander A. 1972. An investigation of particle trajectories in two-phase flow systems. J Fluid Mech. 55:193–208.
  • Nitek S, Wysocki J, Niszczota C. 2011. Use of trans-septal mattress suture of Little's area for anterior epistaxis. J Laryngol Otol. 125:399–401.
  • Patel RG, Garcia GJ, Frank-Ito DO, Kimbell JS, Rhee JS. 2015. Simulating the nasal cycle with computational fluid dynamics. Otolaryngol Head Neck Surg. 152:353–360.
  • Schroeter JD, Garcia GJ, Kimbell JS. 2011. Effects of surface smoothness on inertial particle deposition in human nasal models. J Aerosol Sci. 42:52–63.
  • Shang Y, Dong J, Inthavong K, Tu J. 2015. Comparative numerical modeling of inhaled micron-sized particle deposition in human and rat nasal cavities. Inhal Toxicol. 27:694–705.
  • Shang Y, Dong J, Inthavong K, Tu J. 2017. Computational fluid dynamics analysis of wall shear stresses between human and rat nasal cavities. Eur J Mech-B/Fluids. 61:160–169.
  • Shi H, Kleinstreuer C, Zhang Z. 2007. Modeling of inertial particle transport and deposition in human nasal cavities with wall roughness. J Aerosol Sci. 38:398–419.
  • Stöber W. 1972. Dynamic shape factors of nonspherical aerosol particles. Assess Airborne Particles. 249:289.
  • Supriya M, Shakeel M, Veitch D, Ah-See KW. 2010. Epistaxis: prospective evaluation of bleeding site and its impact on patient outcome. J Laryngol Otol. 124:744–749.
  • Tian ZF, Inthavong K, Tu JY. 2007. Deposition of inhaled wood dust in the nasal cavity. Inhal Toxicol. 19:1155–1165.
  • Tran-Cong S, Gay M, Michaelides EE. 2004. Drag coefficients of irregularly shaped particles. Powder Technol. 139:21–32.
  • Wakayama T, Suzuki M, Tanuma T. 2016. Effect of nasal obstruction on continuous positive airway pressure treatment: computational fluid dynamics analyses. PloS One. 11:e0150951.
  • Wang S, Inthavong K, Wen J, Tu JY, Xue CL. 2009. Comparison of micron-and nanoparticle deposition patterns in a realistic human nasal cavity. Respiratory Physiol Neurobiol. 166:142–151.
  • Xi J, Longest PW. 2008. Numerical predictions of submicrometer aerosol deposition in the nasal cavity using a novel drift flux approach. Int J Heat Mass Transf. 51:5562–5577.
  • Xi J, Si X, Longest W. 2014. Electrostatic charge effects on pharmaceutical aerosol deposition in human nasal-laryngeal airways. Pharmaceutics. 6:26–35.
  • Xiong G-X, Zhan J, Zuo K-J, Rong L-W, Li J-F, Xu G. 2011. Use of computational fluid dynamics to study the influence of the uncinate process on nasal airflow. J Laryngol Otol. 125:30–37.
  • Yidan S, Kiao I, Jiyuan T. 2015. Detailed micro-particle deposition patterns in the human nasal cavity influenced by the breathing zone. Comput Fluids. 114:141–150.
  • Zachow S, Steinmann A, Hildebrandt T, Heppt W. 2007. Understanding nasal airflow via CFD simulation and visualization. Proc Comput Aided Surgery around Head. 173:176.
  • Zachow S, Steinmann A, Hildebrandt T, Webber R, Heppt W. 2006. CFD simulation of nasal airflow: towards treatment planning for functional rhinosurgery. Int J Comp Assist Radiol Surg. 165:167.
  • Zamankhan P, Ahmadi G, Wang Z, Hopke PK, Cheng Y-S, Su WC, Leonard D. 2006. Airflow and deposition of nano-particles in a human nasal cavity. Aerosol Sci Technol. 40:463–476.
  • Zhou B, Huang Q, Cui S, Liu Y, Han D. 2013. Impact of airflow communication between nasal cavities on nasal ventilation. ORL J Otorhinolaryngol Relat Spec. 75:301–308.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.