Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 32, 2020 - Issue 7
1,187
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Estimates of carbon nanotube deposition in the lung: improving quality and robustness

, & ORCID Icon
Pages 282-298 | Received 30 Mar 2020, Accepted 17 Jun 2020, Published online: 21 Jul 2020

References

  • Anjilvel S, Asgharian B. 1995. A multiple-path model of particle deposition in the rat lung. Toxicol Sci. 28:41–50.
  • [ARA] Applied Research Associates. 2018. [accessed 2020 Feb 5]. https://www.ara.com/products/multiple-path-particle-dosimetry-model-mppd-v-304
  • Asgharian B, Anjilvel S. 1998. A multiple-path model of fiber deposition in the rat lung. Toxicol Sci. 44:80–86.
  • Asgharian B, Yu CP. 1988. Deposition of inhaled fibrous particles in the human lung. J Aerosol Med. 1:37–50.
  • Asgharian B, Yu CP. 1989. Deposition of fibers in the rat lung. J Aerosol Sci. 20:355–366.
  • Bahk YK, Buha J, Wang J. 2013. Determination of geometrical length of airborne carbon nanotubes by electron microscopy, model calculation, and filtration method. Aerosol Sci Technol. 47:776–784.
  • Balásházy I, Moustafa M, Hofmann W, Szöke R, El-Hussein A, Ahmed AR. 2005. Simulation of fiber deposition in bronchial airways. Inhal Toxicol. 17:717–727.
  • Baron P, Deye GJ, Chen BT, Schwegler-Berry DE, Shvedova AA, Castranova V. 2008. Aerosolization of single-walled carbon nanotubes for an inhalation study. Inhal Toxicol. 20:751–760.
  • Beddows DCS, Dall'osto M, Harrison RM. 2010. An enhanced procedure for the merging of atmospheric particle size distribution data measured using electrical mobility and time-of-flight analysers. Aerosol Sci Technol. 44:930–938.
  • Bello D, Wardle BL, Zhang J, Yamamoto N, Santeufemio C, Hallock M, Virji MA. 2010. Characterization of exposures to nanoscale particles and fibers during solid core drilling of hybrid carbon nanotube advanced composites. Int J Occup Environ Health. 16:434–450.
  • Brody AR, Roe MW. 1983. Deposition pattern of inorganic particles at the alveolar level in the lungs of rats and mice. Am Rev Respir Dis. 128:724–729.
  • Buckley AJ, Hodgson A, Warren J, Guo C, Smith R. 2016. Size-dependent deposition of inhaled nanoparticles in the rat respiratory tract using a new nose-only exposure system. Aerosol Sci Technol. 50:1–10.
  • Canu IG, Bateson TF, Bouvard V, Debia M, Dion C, Savolainen K, Yu IJ. 2016. Human exposure to carbon-based fibrous nanomaterials: a review. Int J Hyg Environ Health. 219:166–175.
  • Chalupa DC, Morrow PE, Oberdörster G, Utell MJ, Frampton MK. 2004. Ultrafine particle deposition in subjects with asthma. Environ Health Perspect. 112:879–882.
  • Chen BT, Schwegler-Berry D, Cumpston A, Cumpston J, Friend S, Stone S, Keane M. 2016a. Performance of a scanning mobility particle sizer in measuring diverse types of airborne nanoparticles: Multi-walled carbon nanotubes, welding fumes, and titanium dioxide spray. J Occup Environ Hyg. 13:501–508.
  • Chen BT, Schwegler-Berry D, McKinney W, Stone S, Cumpston JL, Friend S, Porter DW, Castranova V, Frazer DG. 2012. Multi-walled carbon nanotubes: sampling criteria and aerosol characterization. Inhal Toxicol. 24:798–820.
  • Chen X, Zhong W, Tom J, Kleinstreuer C, Feng Y, He X. 2016b. Experimental-computational study of fibrous particle transport and deposition in a bifurcating lung model. Particuology. 28:102–113.
  • Chortarea S, Clift MJD, Vanhecke D, Endes C, Wick P, Petri-Fink A, Rothen-Rutishauser B. 2015. Repeated exposure to carbon nanotube-based aerosols does not affect the functional properties of a 3D human epithelial airway model. Nanotoxicology. 9:983–993.
  • Crowde TM, Rosati JA, Schroeter JD, Hickey AJ, Martonen TB. 2002. Fundamental effects of particle morphology on lung delivery: predictions of Stokes’ law and the particular relevance to dry powder inhaler formulation and development. Pharm Res. 19:239–245.
  • Dahm MM, Evans DE, Schubauer-Berigan MK, Birch ME, Fernback JE. 2012. Occupational exposure assessment in carbon nanotube and nanofiber primary and secondary manufacturers. Ann Occup Hyg. 56:542–556.
  • Dahm MM, Schubauer-Berigan MK, Evans DE, Birch ME, Fernback JE, Deddens JA. 2015. Carbon nanotube and nanofiber exposure assessments: an analysis of 14 site visits. ANNHYG. 59:705–723.
  • Dahm MM, Schubauer-Berigan MK, Evans DE, Birch ME, Bertke S, Beard JD, Erdely A, Fernback JE, Mercer RR, Grinshpun SA. 2018. Exposure assessments for a cross-sectional epidemiologic study of US carbon nanotube and nanofiber workers. Int J Hyg Environ Health. 221:429–440.
  • DeCarlo PF, Slowik JG, Worsnop DR, Davidovits P, Jimenez JL. 2004. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: theory. Aerosol Sci Tech. 38:1185–1205.
  • de Winter-Sorkina R, Cassee FR. 2002. From concentration to dose: factors influencing airborne particulate deposition in humans and rats. Bilthoven (Netherlands): RIVM. Report 650010031/2002.
  • Ding JY, Yu CP, Zhang L, Chen YK. 1997. Deposition modelling of fibrous particles in rats: comparisons with available experimental data. Aerosol Sci Technol. 26:403–414.
  • Donaldson K, Poland CA, Murphy FA, MacFarlane M, Chernova T, Schinwald A. 2013. Pulmonary toxicity of carbon nanotubes and asbestos – similarities and differences. Adv Drug Deliv Rev. 65:2078–2086.
  • Dong J, Ma Q. 2019. Integration of inflammation, fibrosis, and cancer induced by carbon nanotubes. Nanotoxicology. 13:1244–1274.
  • [ECETOC] European Centre for Ecotoxicology and Toxicology of Chemicals. 2013. Poorly soluble particles/lung overload. Brussels: ECETOC. Technical Report No. 122.
  • Ellenbecker M, Tsai SJ, Jacobs M, Riediker M, Peters T, Liou S, Avila A, FossHansen S. 2018. The difficulties in establishing an occupational exposure limit for carbon nanotubes. J Nanopart Res. 20:131.
  • Flagan RC. 2008. Differential mobility analysis of aerosols: a tutorial. KONA. 26:254–268.
  • Fröhlich E. 2012. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed. 7:5577–5591.
  • Gaté L, Knudsen KB, Seidel C, Berthing T, Chézeau L, Jacobsen NR, Valentino S, Wallin H, Bau S, Wolff H, et al. 2019. Pulmonary toxicity of two different multi-walled carbon nanotubes in rat: Comparison between intratracheal instillation and inhalation exposure. Toxicol Appl Pharmacol. 375:17–31.
  • Ging J, Tejerina-Anton R, Ramakrishnan G, Nielsen M, Murphy K, Gorham JM, Nguyen T, Orlov A. 2014. Development of a conceptual framework for evaluation of nanomaterials release from nanocomposites: Environmental and toxicological implications. Sci Total Environ. 473-474:9–19.
  • Griffis LC, Henderson TR, Pickrell JA. 1981. A method for determining glass in rat lung after exposure to a glass fiber aerosol. Am Ind Hyg Assoc J. 42:566–569.
  • Han JH, Lee EJ, Lee JH, So KP, Lee YH, Bae GN, Lee SB, Ji JH, Cho MH, Yu IJ. 2008. Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility. Inhal Toxicol. 20:741–749.
  • Hao Y, Qunfeng Z, Fei W, Weizhong Q, Guohua L. 2003. Agglomerated CNTs synthesized in a fluidized bed reactor: agglomerate structure and formation mechanism. Carbon. 41:2855–2863.
  • Harris RL, Fraser DA. 1976. A model for deposition of fibers in the human respiratory system. Am Ind Hyg Assoc J. 37:73–89.
  • Harvey RP, Hamby DM. 2001. Uncertainty in particulate deposition for 1 microm AMAD particles in an adult lung model. Radiat Prot Dosimetry. 95:239–247.
  • Hedmer M, Isaxon C, Nilsson PT, Ludvigsson L, Messing ME, Genberg J, Skaug V, Bohgard M, Tinnerberg H, Pagels JH. 2014. Exposure and emission measurements during production, purification, and functionalization of arc-discharge-produced multi-walled carbon nanotubes. Ann Occup Hyg. 58:355–379.
  • [HEI] Health Effects Institute. 1991. Asbestos in public and commercial buildings: a literature review and synthesis of current knowledge. Cambridge (MA): Health Effects Institute-Asbestos Research.
  • Hinds WC. 1999. Aerosol Technology. 2nd ed. New York: Wiley.
  • Hofmann W. 2009. Modelling particle deposition in human lungs: modelling concepts and comparison with experimental data. Biomarkers. 14:59–62.
  • Hofmann W. 2011. Modelling inhaled particle deposition in the human lung – a review. J Aerosol Sci. 42:693–724.
  • Högberg SM, Âkerstedt HO, Lundström TS, Freund JB. 2010. Respiratory deposition of fibers in the non-inertial regime – development and application of a semi-analytical model. Aerosol Sci Technol. 44:847–860.
  • Hussein T, Löndahl J, Paasonen P, Koivisto AJ, Petäjä T, Hämeri K, Kulmala M. 2013. Modeling regional deposited dose of submicron aerosol particles. Sci Total Environ. 458-460:140–149.
  • [IARC] International Agency for Research on Cancer. 2017. IARC monographs on the evaluation of carcinogenic risks to humans. Volume 111. Some nanomaterials and some fibres. Lyon: IARC.
  • [ICRP] International Commission on Radiological Protection 1994. Human respiratory tract model for radiological protection. ICRP Publication 66. Oxford: Pergamon Press.
  • Ihrie MD, Taylor-Just AJ, Walker NJ, Stout MD, Gupta A, Richey JS, Hayden BK, Baker GL, Sparrow BR, Duke KS, Bonner JC. 2019. Inhalation exposure to multi-walled carbon nanotubes alters the pulmonary allergic response of mice to house dust mite allergen. Inhal Toxicol. 31:192–202.
  • Jackson P, Kling K, Jensen KA, Clausen PA, Madsen AM, Wallin H, Vogel U. 2015. Characterization of genotoxic response to 15 multiwalled carbon nanotubes with variable physicochemical properties including surface functionalizations in the fe1-muta(tm) mouse lung epithelial cell line. Environ Mol Mutagen. 56:183–203.
  • Jacobsen NR, Møller P, Clausen PA, Saber TA, Micheletti C, Jensen KA, Wallin H, Vogel U. 2017. Biodistribution of carbon nanotubes in animal models. Basic Clin Pharmacol Toxicol. 121:30–43.
  • Jakobsson JKF, Aaltonen HL, Nicklasson H, Gudmundsson A, Rissler J, Wollmer P, Löndahl J. 2018. Altered deposition of inhaled nanoparticles in subjects with chronic obstructive pulmonary disease. BMC Pulmon Med. 18:129.
  • Jarabek AN, Asgharian B, Miller FJ. 2005. Dosimetric adjustments for interspecies extrapolation of inhaled poorly soluble particles (PSP). Inhal Toxicol. 17:317–334.
  • Johnson DR, Methner MM, Kennedy AJ, Steevens JA. 2010. Potential for occupational exposure to engineered carbon-based nanomaterials in environmental laboratory studies. Environ Health Perspect. 118:49–54.
  • [JRC] Joint Research Centre, European Commission 2014. Multi-walled carbon nanotubes, NM-400, NM-401, NM-402, NM-403: characterisation and physico-chemical properties. Luxembourg: JRC Repository: NM-Series of Representative Manufactured Nanomaterials, Publications Office of the European Union. Report JRC91205.
  • Kadoya C, Lee BW, Ogami A, Oyabu T, Nishi K, Yamamoto M, Todoroki M, Morimoto Y, Tanaka I, Myojo T. 2016. Analysis of pulmonary surfactant in rat lungs after inhalation of nanomaterials: Fullerenes, nickel oxide and multi-walled carbon nanotubes. Nanotoxicology. 10:194–203.
  • Kane AB, Hurt RH, Gao H. 2018. The asbestos-carbon nanotube analogy: An update. Toxicol Appl Pharmacol. 15:361–380.
  • Kasai T, Gotoh K, Nishizawa T, Sasaki T, Katagiri T, Umeda Y, Toya T, Fukushima S. 2014. Development of a new multi-walled carbon nanotube (MWCNT) aerosol generation and exposure system and confirmation of suitability for conducting a single-exposure inhalation study of MWCNT in rats. Nanotoxicology. 8:169–178.
  • Kasai T, Umeda Y, Ohnishi M, Mine T, Kondo H, Takeuchi T, Matsumoto M, Fukushima S. 2016. Lung carcinogenicity of inhaled multi-walled carbon nanotube in rats. Part Fibre Toxicol. 13:53.
  • Khlystov A, Stanier C, Pandis SN. 2004. An algorithm for combining electrical mobility and aerodynamic size distributions data when measuring ambient aerosol. Aerosol Sci Technol. 38:229–238.
  • Kim JK, Jo MI, Kim Y, Kim TG, Shin JH, Kim BW, Kim HP, Lee HK, Kim HS, Ahn K, Oh SM, et al. 2020. 28-day inhalation toxicity study with evaluation of lung deposition and retention of tangled multi-walled carbon nanotubes. Nanotoxicology. 14:250–262.
  • Kim SH, Mulholland GW, Zachariah MR. 2009. Density measurement of size selected multiwalled carbon nanotubes by mobility-mass characterization. Carbon. 47:1297–1302.
  • Kim SH, Woo KS, Liu MR, Zachariah MR. 2005. Method of measuring charge distribution of nanosized aerosols. J Colloid Interface Sci. 282:46–57.
  • Kim WG, Yong SD, Yook SJ, Ji JH, Kim KH, Bae GN, Chung EK, Kim J. 2017. Comparison of black carbon concentration and particle mass concentration with elemental carbon concentration for multi-walled carbon nanotube emission assessment purpose. Carbon. 122:228–236.
  • Kingston C, Zepp R, Andrady A, Boverhof D, Fehir R, Hawkins D, Roberts J, Sayre P, Shelton B, Sultan Y, et al. 2014. Release characteristics of selected carbon nanotube polymer composites. Carbon. 68:33–57.
  • Kleinstreuer C, Feng Y. 2013. Computational analysis of non-spherical particle transport and deposition in shear flow with application to lung aerosol dynamics – a review. J Biomech Eng. 135:021008.
  • Kleinstreuer C, Zhang Z, Li Z. 2008. Modeling airflow and particle transport/deposition in pulmonary airways. Respir Physiol Neurobiol. 163:128–138.
  • Koblinger L, Hofmann W. 1990. Monte Carlo modelling of aerosol deposition in human lungs. Part I. Simulation of particle transport in a stochastic lung structure. J Aerosol Sci. 21:661–674.
  • Kouassi S, Catto C, Ostiguy C, L’espérance G, Kroeger J, Debia M. 2017. Exposure assessment in a single-walled carbon nanotube primary manufacturer. Ann Work Expos Heal. 61(2):260–266. doi:10.1093/annweh/wxw017.
  • Kovochich M, Fung CCD, Avanasi R, Madl AK. 2018. Review of techniques and studies characterizing the release of carbon nanotubes from nanocomposites: implications for exposure and human health risk assessment. J Expo Sci Environ Epidemiol. 28:203–215.
  • Ku BK, Birch ME. 2019. Aerosolization and characterization of carbon nanotube and nanofiber materials: Relationship between aerosol properties and bulk density. J Aerosol Sci. 127:38–48. doi:10.1016/j.jaerosci.2018.10.004.
  • Ku BK, Deye G, Turkevich LA. 2013. Characterization of a vortex shaking method for aerosolizing fibers. Aerosol Sci Technol. 47:1293–1301.
  • Ku BK, Emery MS, Maynard AD, Stolzenburg MR, McMurry PH. 2006. In situ structure characterization of airborne carbon nanofibres by a tandem mobility-mass analysis. Nanotechnology. 17:3613–3621.
  • Ku BK, Kulkarni P. 2015. Measurement of transport properties of aerosolized nanomaterials. J Aerosol Sci. 90:169–181.
  • Ku BK, Kulkarni P. 2018. Application of fractal theory to estimation of equivalent diameters of airbrone carbon nanotube and nanofiber agglomerates. Aerosol Sci Technol. 52:597–608.
  • Kuempel ED, Jaurand MC, Møller P, Morimoto Y, Kobayashi N, Pinkerton KE, Sargent LM, Vermeulen RCH, Fubini B, Kane AB. 2017. Evaluating the mechanistic evidence and key data gaps in assessing the potential carcinogenicity of carbon nanotubes and nanofibers in humans. Crit Rev Toxicol. 47:1–58.
  • Kuijpers E, Bekker C, Fransman W, Brouwer D, Tromp P, Vlaanderen J, Godderis L, Hoet P, Lan Q, Silverman D, et al. 2016. Occupational exposure to multi-walled carbon nanotubes during commercial production synthesis and handling. ANNHYG. 60:305–317.
  • Kulkarni P, Baron PA, Willeke K, editors. 2011. Aerosol measurement: principles, techniques, and applications. 3rd ed. New York: Wiley.
  • Kulkarni P, Deye GJ, Baron PA. 2009. Bipolar diffusion charging characteristics of single-wall carbon nanotube aerosol particles. J Aerosol Sci. 40:164–179.
  • Laurent C, Flahaut E, Peigney A. 2010. The weight and density of carbon nanotubes versus the number of walls and diameter. Carbon. 48:2994–2996.
  • LeBuf RF, Stefaniak AB, Chen BT, Frazer DG, Virji MA. 2011. Measurement of airborne nanoparticle surface area using a filter-based gas adsorption method for inhalation toxicology experiments. Nanotoxicology. 5:687–699.
  • Lee JH, Lee SB, Bae GN, Jeon KS, Yoon JU, Ji JH, Sung JH, Lee BG, Lee JH, Yang JS, et al. 2010. Exposure assessment of carbon nanotube manufacturing workplaces. Inhal Toxicol. 22:369–381.
  • Lee YS, Sung JH, Song KS, Kim JK, Choi BS, Yu IJ, Park JD. 2019. Derivation of occupational exposure limits for multi-walled carbon nanotubes and graphene using subchronic inhalation toxicity data and a multi-path particle dosimetry model. Toxicol Res (Camb). 8:580–586.
  • Ma-Hock L, Treumann S, Strauss V, Brill S, Luizi F, Mertler M, Wiench K, Gamer AO, van Ravenzwaay B, Landsiedel R. 2009. Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol Sci. 112:468–481.
  • Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V. 2004. Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health Part A. 67:87–107.
  • McKinney W, Chen B, Frazer D. 2009. Computer controlled multi-walled carbon nanotube inhalation exposure system. Inhal Toxicol. 21:1053–1061.
  • McMurry PH, Wang X, Park K, Ehara K. 2002. The relationship between mass and mobility for atmospheric particles: a new technique for measuring particle density. Aerosol Sci Technol. 36:227–238.
  • Menache MG, Miller FJ, Raabe OG. 1995. Particle inhalability curves for humans and small laboratory animals. Ann Occup Hyg. 39:317–328.
  • Mercer RR, Scabilloni JF, Hubbs AF, Battelli LA, McKinney W, Friend S, Wolfarth MG, Andrew M, Castranova V, Porter DW. 2013. Distribution and fibrotic response following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol. 10:33.
  • Millage KK, Bergman J, Asgharian B, McClellan G. 2010. A review of inhalability fraction models: discussion and recommendations. Inhal Toxicol. 22:151–159.
  • Miller FJ, Asgharian B, Schroeter JD, Price O. 2016. Improvements and additions to the multiple path particle dosimetry model. J Aerosol Sci. 99:14–26.
  • Mitchell LA, Gao J, Vander Wal R, Gigliotti A, Burchiel SW, McDonald JD. 2007. Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol Sci. 100:203–214.
  • Morawska L, Johnson G, Ristovski ZD, Agranovski V. 1999. Relation between particle mass and number for submicrometer airborne particles. Atmos Environ. 33(13):1983–1990. doi:10.1016/S1352-2310(98)00433-6.
  • Nasibulin AG, Shandakov SD, Anisimov AS, Gonzalez D, Jiang H, Pudas M, Queipo P, Kauppinen EI. 2008. Charging of aerosol products during ferrocene vapor decomposition in N2 and CO atmospheres. J Phys Chem C. 112:5762–5769.
  • Nielsen GD, Koponen IK. 2018. Insulation fiber deposition in the airways of men and rats. A review of experimental and computational studies. Regul Toxicol Pharm. 94:252–270. doi:10.1016/j.yrtph.2018.01.021.
  • [NCRP] National Council on Radiation Protection and Measurements 1997. Deposition, retention and dosimetry of inhaled radioactive substances. Bethesda (MD): NCRP. Report No. 125.
  • [NIOSH] National Institute for Occupational Safety and Health. 2013. Current intelligence bulletin 65: occupational exposure to carbon nanotubes and nanofibers. Cincinnati (OH): Centers for Disease Control and Prevention, NIOSH. DHHS (NIOSH) Publication Number 2013–145.
  • Nowack B, David RM, Fissan H, Morris H, Shatkin JA, Stintz M, Zepp R, Brouwer D. 2013. Potential release scenarios for carbon nanotubes used in composites. Environ Int. 59:1–11.
  • O’Shaughnessy P, Adamcakova-Dodd A, Altmaier R, Thorne P. 2014. Assessment of the aerosol generation and toxicity of carbon nanotubes. Nanomaterials. 4:439–453.
  • Oberdörster G, Castranova V, Asgharian B, Sayre P. 2015. Inhalation exposure to carbon nanotubes (CNT) and carbon nanofibers (CNF): methodology and dosimetry. J Toxicol Environ Health B Crit Rev. 18:121–212.
  • Oberdörster G, Kuhlbusch T. 2018. In vivo effects: methodologies and biokinetics of inhaled nanomaterials. Nanoimpact. 10:38–60.
  • [OECD] Organisation for Economic Co-operation and Development. 2017a. Test No. 412: Subacute inhalation toxicity: 28-day study, OECD Guidelines for the Testing of Chemicals, Section 4. Paris: OECD Publishing. [accessed 2020 Feb 5]. http://dx.doi.org/10.1787/9789264070783-en
  • [OECD] Organisation for Economic Co-operation and Development 2017b. Test No. 413: Subchronic inhalation toxicity: 90-day study, OECD Guidelines for the Testing of Chemicals, Section 4. Paris: OECD Publishing. [accessed 2020 Feb 5]. http://dx.doi.org/10.1787/9789264070806-en.
  • Olfert JS, Symonds JPR, Collings N. 2007. The effective density and fractal dimension of particles emitted from a light-duty diesel vehicle with a diesel oxidation catalyst. J Aerosol Sci. 38:69–82.
  • Oyabu T, Myojo T, Morimoto Y, Ogami A, Hirohashi M, Yamamoto M, Todoroki M, Mizuguchi Y, Hashiba M, Lee BW, et al. 2011. Biopersistence of inhaled MWCNT in rat lungs in a 4-week well-characterized exposure. Inhal Toxicol. 23:784–791.
  • Pauluhn J. 2010. Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol Sci. 113:226–242.
  • Pauluhn J, Rosenbruch M. 2015. Lung burdens and kinetics of multi-walled carbon nanotubes (Baytubes) are highly dependent on the disaggregation of aerosolized MWCNT. Nanotoxicology. 9:242–252.
  • Pfeifer S, Müller T, Weinhold K, Zikova N, Martins dos Santos S, Marinoni A, Bischof OF, Kykal C, Ries L, Meinhardt F, et al. 2016. Intercomparison of 15 aerodynamic particle size spectrometers (APS 3321): uncertainties in particle sizing and number size distribution. Atmos Meas Tech. 9:1545–1551.
  • Podgorski A, Gradon L. 2012. The mechanics of a fibrous aerosol particle. Aerosol Sci Technol. 46:i–ii.
  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Stone V, Brown S, MacNee W, Donaldson K. 2008. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol. 3:423–428.
  • Porter DW, Hubbs AF, Chen BT, McKinney W, Mercer RR, Wolfarth MG, Battelli L, Wu N, Sriram K, Leonard S, et al. 2012. Acute pulmonary dose-responses to inhaled multi-walled carbon nanotubes. Nanotoxicology. 7:1179–1194.
  • Porter DW, Hubbs AF, Mercer RR, Wu N, Wolfarth MG, Sriram K, Leonard S, Battelli L, Schwegler-Berry D, Friend S, et al. 2010. Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology. 269:136–147.
  • Poulsen SS, Knudsen KB, Jackson P, Weydahl IEK, Saber AT, Wallin H, Vogel U. 2017. Multi-walled carbon nanotube-physicochemical properties predict the systemic acute phase response following pulmonary exposure in mice. PLoS One. 12:e0174167.
  • Prodi V, Mularoni A. 1985. Electrostatic lung deposition experiments with humans and animals. Ann Occup Hyg. 29:229–240.
  • Rostami AA. 2009. Computational modeling of aerosol deposition in respiratory tract: a review. Inhal Toxicol. 21:262–290.
  • Ryman-Rasmussen JP, Cesta MF, Brody AR, Shipley-Phillips JK, Everitt JI, Tewksbury EW, Moss OR, Wong BA, Dodd DE, Andersen ME, et al. 2009. Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol. 4:747–750.
  • Sarangi B, Aggarwal SG, Sinha D, Gupta PK. 2016. Aerosol effective density measurement using scanning mobility particle sizer and quartz crystal microbalance with the estimation of involved uncertainty. Atmos Meas Tech. 9:859–875.
  • Scheckman J, McMurry P. 2011. Deposition of silica agglomerates in a cast of human lung airways: enhancement relative to spheres of equal mobility and aerodynamic diameter. J Aerosol Sci. 42:508–516.
  • Schmid O, Cassee FR. 2017. On the pivotal role of dose for particle toxicology and risk assessment: exposure is a poor surrogate for delivered dose. Part Fibre Toxicol. 14:52.
  • Schmid O, Stoeger T. 2016. Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung. J Aerosol Sci. 99:133–143.
  • Schwotzer D, Ernst H, Schaudien D, Kock H, Pohlmann G, Dasenbrock C, Creutzenberg O. 2017. Effects from a 90-day inhalation toxicity study with cerium oxide and barium sulfate nanoparticles in rats. Part Fibre Toxicol. 14:23.
  • Sébastien P. 1991. Pulmonary deposition and clearance of airborne mineral fibers. In: Liddell D, Miller K, editors. Mineral fibers and health. Boca Raton (FL): CRC Press.
  • Shin JH, Han SG, Kim JK, Kim BW, Hwang JH, Lee JS, Lee JH, Baek JE, Kim TG, Kim KS, et al. 2015. 5-Day repeated inhalation and 28-day post-exposure study of graphene. Nanotoxicology. 9:1023–1031.
  • Shachar-Berman L, Ostrovski Y, Koshiyama K, Wada S, Kassinos SC, Sznitman J. 2019. Targeting inhaled fibers to the pulmonary acinus: opportunities for augmented delivery from in silico simulations. Eur J Pharm Sci. 137:105003.
  • Shvedova AA, Kisin E, Murray AR, Johnson VJ, Gorelik O, Arepalli S, Hubbs AF, Mercer RR, Keohavong P, Sussman N, et al. 2008. Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol. 295:L552–L565.
  • Stapleton P, Minarchick V, Cumpston A, Mckinney W, Chen B, Sager T, Frazer D, Mercer R, Scabilloni J, Andrew M, et al. 2012. Impairment of coronary arteriolar endothelium-dependent dilation after multi-walled carbon nanotube inhalation: A time-course study. IJMS. 13(12):13781–13803. doi:10.3390/ijms131113781.
  • Sturm R. 2014. Theoretical deposition of nanotubes in the respiratory tract of children and adults. Ann Transl Med. 2:6.
  • Sturm R. 2018. Deposition of carbon nanotubes in the human respiratory tract: a theoretical approach. J Public Health Emerg. 2:19–19.
  • Sturm R, Hofmann W. 2009. A theoretical approach to the deposition and clearance of fibers with variable size in the human respiratory tract. J Hazard Mater. 170:210–218.
  • Su WC, Cheng YS. 2015. Estimation of carbon nanotubes deposition in a human respiratory tract replica. J Aerosol Sci. 79:72–85.
  • Taquahashi Y, Ogawa Y, Takagi A, Tsuji M, Morita K, Kanno J. 2013. An improved dispersion method of multi-wall carbon nanotube for inhalation toxicity studies of experimental animals. J Toxicol Sci. 38:619–628.
  • Tavakoli F, Olfert JS. 2014. Determination of particle mass, effective density, mass–mobility exponent, and dynamic shape factor using an aerodynamic aerosol classifier and a differential mobility analyzer in tandem. J Aerosol Sci. 75:35–42.
  • Tian L, Ahmadi G. 2016. Transport and deposition of nano-fibers in human upper tracheobronchial airways. J Aerosol Sci. 91:22–32.
  • Timbrell V. 1982. Deposition and retention of fibres in the human lung. Ann Occup Hyg. 26:347–369.
  • Trubetskaya A, Beckmann G, Wadenbäck J, Holm JK, Velaga SP, Weber R. 2017. One way of representing the size and shape of biomass particles in combustion modeling. Fuel. 206:675–683.
  • van Berlo D, Clift M, Albrecht C, Schins R. 2012. Carbon nanotubes: an insight into the mechanisms of their potential genotoxicity. Swiss Med Wkly. 142:w13698.
  • Wang J, Bahk YK, Chen SC, Pui D. 2015. Characteristics of airborne fractal-like agglomerates of carbon nanotubes. Carbon. 93:441–450.
  • Wiedensohler A. 1988. An approximation for the bipolar charge distribution for particles in the submicron size range. J Aerosol Sci. 19:387–389.
  • Yeh HC, Cuddihy RG, Phalen RF, Chang IY. 1996. Comparison of calculated respiratory tract deposition of particles based on the proposed NCRP model and the new ICRP66 model. Aerosol Sci Technol. 25:134–140.
  • Zeinabad HA, Zarrabian A, Saboury AA, Alizadeh AA, Falahati M. 2016. Interaction of single and multi wall carbon nanotubes with the biological systems: tau protein and PC12 cells as targets. Sci Rep. 6:29644.
  • Zelenyuk A, Imre D. 2007. On the effect of particle alignment in the DMA. Aerosol Sci Technol. 41:112–124.
  • Zhou Y, Su WC, Cheng YS. 2007. Fiber deposition in the tracheobronchial region: experimental measurements. Inhal Toxicol. 19:1071–1078.