Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 33, 2021 - Issue 5
354
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Effects of ozone and particulate matter on airway epithelial barrier structure and function: a review of in vitro and in vivo studies

&
Pages 177-192 | Received 15 Apr 2021, Accepted 06 Jul 2021, Published online: 04 Aug 2021

References

  • Georas SN, Rezaee F. 2014. Epithelial barrier function: at the front line of asthma immunology and allergic airway inflammation. J Allergy Clin Immunol. 134(3):509–520.
  • Martìn-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A, et al. 1998. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol. 142(1):117–127.
  • Ebnet K, Suzuki A, Horikoshi Y, Hirose T, zu Brickwedde MKM, Ohno S, Vestweber D. 2001. The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM). Embo J. 20(14):3738–3748.
  • Ebnet K, Aurrand-Lions M, Kuhn A, Kiefer F, Butz S, Zander K, zu Brickwedde M-KM, Suzuki A, Imhof BA, Vestweber D. 2003. The junctional adhesion molecule (JAM) family members JAM-2 and JAM-3 associate with the cell polarity protein PAR-3: a possible role for JAMs in endothelial cell polarity. J Cell Sci. 116(Pt 19):3879–3891.
  • Joberty G, Petersen C, Gao L, Macara IG. 2000. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat Cell Biol. 2(8):531–539.
  • Johansson A, Driessens M, Aspenstrom P. 2000. The mammalian homologue of the Caenorhabditis elegans polarity protein PAR-6 is a binding partner for the Rho GTPases Cdc42 and Rac1. J Cell Sci. 113(18):3267–3275.
  • Suzuki A, Yamanaka T, Hirose T, Manabe N, Mizuno K, Shimizu M, Akimoto K, Izumi Y, Ohnishi T, Ohno S. 2001. Atypical protein kinase C is involved in the evolutionarily conserved par protein complex and plays a critical role in establishing epithelia-specific junctional structures. J Cell Biol. 152(6):1183–1196.
  • Barton ES, Forrest JC, Connolly JL, Chappell JD, Liu Y, Schnell FJ, Nusrat A, Parkos CA, Dermody TS. 2001. Junction adhesion molecule is a receptor for reovirus. Cell. 104(3):441–451.
  • Excoffon KJA, Guglielmi KM, Wetzel JD, Gansemer ND, Campbell JA, Dermody TS, Zabner J. 2008. Reovirus preferentially infects the basolateral surface and is released from the apical surface of polarized human respiratory epithelial cells. J Infect Dis. 197(8):1189–1197.
  • Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS, Horwitz MS, Crowell RL, Finberg RW. 1997. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science. 275(5304):1320–1323.
  • Tomko RP, Xu R, Philipson L. 1997. HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci U S A. 94(7):3352–3356.
  • Woodfin A, Voisin M-B, Beyrau M, Colom B, Caille D, Diapouli F-M, Nash GB, Chavakis T, Albelda SM, Rainger GE, et al. 2011. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nat Immunol. 12(8):761–769.
  • Zen K, Liu Y, McCall IC, Wu T, Lee W, Babbin BA, Nusrat A, Parkos CA. 2005. Neutrophil migration across tight junctions is mediated by adhesive interactions between epithelial coxsackie and adenovirus receptor and a junctional adhesion molecule-like protein on neutrophils. Mol Biol Cell. 16(6):2694–2703.
  • Morita K, Furuse M, Fujimoto K, Tsukita S. 1999. Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci U S A. 96(2):511–516.
  • Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S. 1998. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol. 141(7):1539–1550.
  • Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y, Noda T, Kubo A, Tsukita S. 2002. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol. 156(6):1099–1111.
  • Amasheh S, Meiri N, Gitter AH, SchöNeberg T, Mankertz J, Schulzke JrgD, Fromm M. 2002. Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J C Sci. 115(24):4969–4976.
  • Rosenthal R, Milatz S, Krug SM, Oelrich B, Schulzke J-D, Amasheh S, Günzel D, Fromm M. 2010. Claudin-2, a component of the tight junction, forms a paracellular water channel. J Cell Sci. 123(Pt 11):1913–1921.
  • Colegio OR, Van Itallie CM, McCrea HJ, Rahner C, Anderson JM. 2002. Claudins create charge-selective channels in the paracellular pathway between epithelial cells. Am J Physiol Cell Physiol. 283(1):C142–C147.
  • Yu ASL, Cheng MH, Angelow S, Günzel D, Kanzawa SA, Schneeberger EE, Fromm M, Coalson RD. 2009. Molecular basis for cation selectivity in claudin-2-based paracellular pores: identification of an electrostatic interaction site. J Gen Physiol. 133(1):111–127.
  • Suzuki H, Tani K, Tamura A, Tsukita S, Fujiyoshi Y. 2015. Model for the architecture of claudin-based paracellular ion channels through tight junctions. J Mol Biol. 427(2):291–297.
  • Colegio OR, Itallie CV, Rahner C, Anderson JM. 2003. Claudin extracellular domains determine paracellular charge selectivity and resistance but not tight junction fibril architecture. Am J Physiol Cell Physiol. 284(6):C1346–C54.
  • LaFemina MJ, Rokkam D, Chandrasena A, Pan J, Bajaj A, Johnson M, Frank JA. 2010. Keratinocyte growth factor enhances barrier function without altering claudin expression in primary alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol. 299(6):L724–L34.
  • Milatz S, Krug SM, Rosenthal R, Günzel D, Müller D, Schulzke J-D, Amasheh S, Fromm M. 2010. Claudin-3 acts as a sealing component of the tight junction for ions of either charge and uncharged solutes. Biochim Biophys Acta. 1798(11):2048–2057.
  • Hashimoto K, Oshima T, Tomita T, Kim Y, Matsumoto T, Joh T, Miwa H. 2008. Oxidative stress induces gastric epithelial permeability through claudin-3. Biochem Biophys Res Commun. 376(1):154–157.
  • Mitchell LA, Overgaard CE, Ward C, Margulies SS, Koval M. 2011. Differential effects of claudin-3 and claudin-4 on alveolar epithelial barrier function. Am J Physiol Lung Cell Mol Physiol. 301(1):L40–L9.
  • Chen SP, Zhou B, Willis BC, Sandoval AJ, Liebler JM, Kim K-J, Ann DK, Crandall ED, Borok Z. 2005. Effects of transdifferentiation and EGF on claudin isoform expression in alveolar epithelial cells. J Appl Physiol (1985). 98(1):322–328.
  • Borok Z, Hami A, Danto S, Lubman R, Kim K, Crandall E. 1996. Effects of EGF on alveolar epithelial junctional permeability and active sodium transport. Am J Physiol. 270(4 Pt 1):L559–L65.
  • Furuse M, Sasaki H, Tsukita S. 1999. Manner of interaction of heterogeneous claudin species within and between tight junction strands. J Cell Biol. 147(4):891–903.
  • Coyne CB, Gambling TM, Boucher RC, Carson JL, Johnson LG. 2003. Role of claudin interactions in airway tight junctional permeability. Am J Physiol Lung Cell Mol Physiol. 285(5):L1166–L78.
  • Daugherty BL, Ward C, Smith T, Ritzenthaler JD, Koval M. 2007. Regulation of heterotypic claudin compatibility. J Biol Chem. 282(41):30005–30013.
  • Van Itallie C, Rahner C, Anderson JM. 2001. Regulated expression of claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability. J Clin Invest. 107(10):1319–1327.
  • Kage H, Flodby P, Gao D, Kim YH, Marconett CN, DeMaio L, Kim K-J, Crandall ED, Borok Z. 2014. Claudin 4 knockout mice: normal physiological phenotype with increased susceptibility to lung injury. Am J Physiol Lung Cell Mol Physiol. 307(7):L524–L36.
  • Wray C, Mao Y, Pan J, Chandrasena A, Piasta F, Frank JA. 2009. Claudin-4 augments alveolar epithelial barrier function and is induced in acute lung injury. Am J Physiol Lung Cell Mol Physiol. 297(2):L219–L27.
  • Rokkam D, LaFemina MJ, Lee JW, Matthay MA, Frank JA. 2011. Claudin-4 levels are associated with intact alveolar fluid clearance in human lungs. Am J Pathol. 179(3):1081–1087.
  • LaFemina MJ, Sutherland KM, Bentley T, Gonzales LW, Allen L, Chapin CJ, Rokkam D, Sweerus KA, Dobbs LG, Ballard PL, et al. 2014. Claudin-18 deficiency results in alveolar barrier dysfunction and impaired alveologenesis in mice. Am J Respir Cell Mol Biol. 51(4):550–558.
  • Sweerus K, Lachowicz-Scroggins M, Gordon E, LaFemina M, Huang X, Parikh M, Kanegai C, Fahy JV, Frank JA. 2017. Claudin-18 deficiency is associated with airway epithelial barrier dysfunction and asthma. J Allergy Clin Immunol. 139(1):72–81.e1.
  • Li G, Flodby P, Luo J, Kage H, Sipos A, Gao D, Ji Y, Beard LL, Marconett CN, DeMaio L, et al. 2014. Knockout mice reveal key roles for claudin 18 in alveolar barrier properties and fluid homeostasis. Am J Respir Cell Mol Biol. 51(2):210–222.
  • Raleigh DR, Marchiando AM, Zhang Y, Shen L, Sasaki H, Wang Y, Long M, Turner JR. 2010. Tight junction-associated MARVEL proteins marveld3, tricellulin, and occludin have distinct but overlapping functions. Mol Biol Cell. 21(7):1200–1213.
  • Steed E, Rodrigues NT, Balda MS, Matter K. 2009. Identification of MarvelD3 as a tight junction-associated transmembrane protein of the occludin family. BMC Cell Biol. 10(1):95.
  • Steed E, Elbediwy A, Vacca B, Dupasquier S, Hemkemeyer SA, Suddason T, Costa AC, Beaudry J-B, Zihni C, Gallagher E, et al. 2014. MarvelD3 couples tight junctions to the MEKK1-JNK pathway to regulate cell behavior and survival. J Cell Biol. 204(5):821–838.
  • Krug SM, Amasheh S, Richter JF, Milatz S, Günzel D, Westphal JK, Huber O, Schulzke JD, Fromm M. 2009. Tricellulin forms a barrier to macromolecules in tricellular tight junctions without affecting ion permeability. Mol Biol Cell. 20(16):3713–3724.
  • Buschmann MM, Shen L, Rajapakse H, Raleigh DR, Wang Y, Wang Y, Lingaraju A, Zha J, Abbott E, McAuley EM, et al. 2013. Occludin OCEL-domain interactions are required for maintenance and regulation of the tight junction barrier to macromolecular flux. Mol Biol Cell. 24(19):3056–3068.
  • Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S. 1993. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol. 123(6 Pt 2):1777–1788.
  • Al-Sadi R, Khatib K, Guo S, Ye D, Youssef M, Ma T. 2011. Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier. Am J Physiol Gastrointest Liver Physiol. 300(6):G1054–G64.
  • Van Itallie CM, Fanning AS, Holmes J, Anderson JM. 2010. Occludin is required for cytokine-induced regulation of tight junction barriers. J Cell Sci. 123(Pt 16):2844–2852.
  • Balda MS, Whitney JA, Flores C, González S, Cereijido M, Matter K. 1996. Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J Cell Biol. 134(4):1031–1049.
  • McCarthy KM, Skare IB, Stankewich MC, Furuse M, Tsukita S, Rogers RA, Lynch RD, Schneeberger EE. 1996. Occludin is a functional component of the tight junction. J Cell Sci. 109(9):2287–2298.
  • Saitou M, Furuse M, Sasaki H, Schulzke J-D, Fromm M, Takano H, Noda T, Tsukita S. 2000. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell. 11(12):4131–4142.
  • Schulzke J, Gitter A, Mankertz J, Spiegel S, Seidler U, Amasheh S, Saitou M, Tsukita S, Fromm M. 2005. Epithelial transport and barrier function in occludin-deficient mice. Biochim Biophys Acta. 1669(1):34–42.
  • Marchiando AM, Shen L, Graham WV, Weber CR, Schwarz BT, Austin JR, Raleigh DR, Guan Y, Watson AJM, Montrose MH, et al. 2010. Caveolin-1-dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo. J Cell Biol. 189(1):111–126.
  • Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S. 2005. Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol. 171(6):939–945.
  • Higashi T, Tokuda S, Kitajiri S-i, Masuda S, Nakamura H, Oda Y, Furuse M. 2013. Analysis of the 'angulin' proteins LSR, ILDR1 and ILDR2-tricellulin recruitment, epithelial barrier function and implication in deafness pathogenesis. J Cell Sci. 126(Pt 4):966–977.
  • Masuda S, Oda Y, Sasaki H, Ikenouchi J, Higashi T, Akashi M, Nishi E, Furuse M. 2011. LSR defines cell corners for tricellular tight junction formation in epithelial cells. J Cell Sci. 124(Pt 4):548–555.
  • Oda Y, Otani T, Ikenouchi J, Furuse M. 2014. Tricellulin regulates junctional tension of epithelial cells at tricellular contacts through Cdc42. J Cell Sci. 127(Pt 19):4201–4212.
  • Staehelin L. 1973. Further observations on the fine structure of freeze-cleaved tight junctions. J Cell Sci. 13(3):763–786.
  • Ikenouchi J, Sasaki H, Tsukita S, Furuse M, Tsukita S. 2008. Loss of occludin affects tricellular localization of tricellulin. Mol Biol Cell. 19(11):4687–4693.
  • Smyth T, Veazey J, Eliseeva S, Chalupa D, Elder A, Georas SN. 2020. Diesel exhaust particle exposure reduces expression of the epithelial tight junction protein Tricellulin. Part Fibre Toxicol. 17(1):52
  • Huber D, Balda MS, Matter K. 2000. Occludin modulates transepithelial migration of neutrophils. J Biol Chem. 275(8):5773–5778.
  • Burns AR, Walker DC, Brown ES, Thurmon LT, Bowden RA, Keese CR, Simon SI, Entman ML, Smith CW. 1997. Neutrophil transendothelial migration is independent of tight junctions and occurs preferentially at tricellular corners. J Immunol. 159(6):2893–2903.
  • Gopalan PK, Burns AR, Simon SI, Sparks S, McIntire LV, Smith CW. 2000. Preferential sites for stationary adhesion of neutrophils to cytokine‐stimulated HUVEC under flow conditions. J Leukocyte Biol. 68(1):47–57.
  • Rabodzey A, Alcaide P, Luscinskas FW, Ladoux B. 2008. Mechanical forces induced by the transendothelial migration of human neutrophils. Biophys J. 95(3):1428–1438.
  • Burns AR, Bowden RA, MacDonell SD, Walker DC, Odebunmi TO, Donnachie EM, Simon SI, Entman ML, Smith CW. 2000. Analysis of tight junctions during neutrophil transendothelial migration. J Cell Sci. 113(1):45–57.
  • Kubo A, Nagao K, Yokouchi M, Sasaki H, Amagai M. 2009. External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J Exp Med. 206(13):2937–2946.
  • Shum WWC, Da Silva N, McKee M, Smith PJ, Brown D, Breton S. 2008. Transepithelial projections from basal cells are luminal sensors in pseudostratified epithelia. Cell. 135(6):1108–1117.
  • Wheelock MJ, Jensen PJ. 1992. Regulation of keratinocyte intercellular junction organization and epidermal morphogenesis by E-cadherin. J Cell Biol. 117(2):415–425.
  • Lewis JE, Jensen PJ, Wheelock MJ. 1994. Cadherin function is required for human keratinocytes to assemble desmosomes and stratify in response to calcium. J Invest Dermatol. 102(6):870–877.
  • McLachlan RW, Kraemer A, Helwani FM, Kovacs EM, Yap AS. 2007. E-cadherin adhesion activates c-Src signaling at cell-cell contacts. Mol Biol Cell. 18(8):3214–3223.
  • Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA. 2008. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 68(10):3645–3654.
  • Oka H, Shiozaki H, Kobayashi K, Inoue M, Tahara H, Kobayashi T, Takatsuka Y, Matsuyoshi N, Hirano S, Takeichi M. 1993. Expression of E-cadherin cell adhesion molecules in human breast cancer tissues and its relationship to metastasis. Cancer Res. 53(7):1696–1701.
  • Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA. 2000. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2(2):76–83.
  • Heijink IH, Brandenburg SM, Noordhoek JA, Postma DS, Slebos D-J, van Oosterhout AJ. 2010. Characterisation of cell adhesion in airway epithelial cell types using electric cell-substrate impedance sensing. Eur Respir J. 35(4):894–903.
  • Forteza RM, Casalino-Matsuda SM, Falcon NS, Gattas MV, Monzon ME. 2012. Hyaluronan and layilin mediate loss of airway epithelial barrier function induced by cigarette smoke by decreasing E-cadherin. J Biol Chem. 287(50):42288–42298.
  • De Boer W, Sharma HS, Baelemans S, Hoogsteden H, Lambrecht B, Braunstahl G-J. 2008. Altered expression of epithelial junctional proteins in atopic asthma: possible role in inflammation. Can J Physiol Pharmacol. 86(3):105–112.
  • Rübsam M, Mertz AF, Kubo A, Marg S, Jüngst C, Goranci-Buzhala G, Schauss AC, Horsley V, Dufresne ER, Moser M, et al. 2017. E-cadherin integrates mechanotransduction and EGFR signaling to control junctional tissue polarization and tight junction positioning. Nat Commun. 8(1):1–16.
  • Ando‐Akatsuka Y, Yonemura S, Itoh M, Furuse M, Tsukita S. 1999. Differential behavior of E‐cadherin and occludin in their colocalization with ZO‐1 during the establishment of epithelial cell polarity. J Cell Physiol. 179(2):115–125.
  • Capaldo CT, Macara IG. 2007. Depletion of E-cadherin disrupts establishment but not maintenance of cell junctions in Madin-Darby canine kidney epithelial cells. Mol Biol Cell. 18(1):189–200.
  • Gumbiner B, Simons K. 1986. A functional assay for proteins involved in establishing an epithelial occluding barrier: identification of a uvomorulin-like polypeptide. J Cell Biol. 102(2):457–468.
  • Larue L, Ohsugi M, Hirchenhain J, Kemler R. 1994. E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc Natl Acad Sci USA. 91(17):8263–8267.
  • Tunggal JA, Helfrich I, Schmitz A, Schwarz H, Günzel D, Fromm M, Kemler R, Krieg T, Niessen CM. 2005. E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions. Embo J. 24(6):1146–1156.
  • Tinkle CL, Lechler T, Pasolli HA, Fuchs E. 2004. Conditional targeting of E-cadherin in skin: insights into hyperproliferative and degenerative responses. Proc Natl Acad Sci U S A. 101(2):552–557.
  • Nagafuchi A, Takeichi M. 1989. Transmembrane control of cadherin-mediated cell adhesion: a 94 kDa protein functionally associated with a specific region of the cytoplasmic domain of E-cadherin. Cell Regul. 1(1):37–44.
  • Ozawa M, Baribault H, Kemler R. 1989. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. Embo J. 8(6):1711–1717.
  • Hinck L, Näthke IS, Papkoff J, Nelson WJ. 1994. Dynamics of cadherin/catenin complex formation: novel protein interactions and pathways of complex assembly. J Cell Biol. 125(6):1327–1340.
  • Ozawa M, Ringwald M, Kemler R. 1990. Uvomorulin-catenin complex formation is regulated by a specific domain in the cytoplasmic region of the cell adhesion molecule. Proc Natl Acad Sci U S A. 87(11):4246–4250.
  • Yamada S, Pokutta S, Drees F, Weis WI, Nelson WJ. 2005. Deconstructing the cadherin-catenin-actin complex. Cell. 123(5):889–901.
  • Drees F, Pokutta S, Yamada S, Nelson WJ, Weis WI. 2005. Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell. 123(5):903–915.
  • Cavey M, Lecuit T. 2009. Molecular bases of cell-cell junctions stability and dynamics. Cold Spring Harb Perspect Biol. 1(5):a002998.
  • Reymond N, Fabre S, Lecocq E, Adelaïde J, Dubreuil P, Lopez M. 2001. Nectin4/PRR4, a new afadin-associated member of the nectin family that trans-interacts with nectin1/PRR1 through V domain interaction. J Biol Chem. 276(46):43205–43215.
  • Satoh-Horikawa K, Nakanishi H, Takahashi K, Miyahara M, Nishimura M, Tachibana K, Mizoguchi A, Takai Y. 2000. Nectin-3, a new member of immunoglobulin-like cell adhesion molecules that shows homophilic and heterophilic cell-cell adhesion activities. J Biol Chem. 275(14):10291–10299.
  • Miyahara M, Nakanishi H, Takahashi K, Satoh-Horikawa K, Tachibana K, Takai Y. 2000. Interaction of nectin with afadin is necessary for its clustering at cell-cell contact sites but not for its cis dimerization or trans interaction. J Biol Chem. 275(1):613–618.
  • Yamada A, Fujita N, Sato T, Okamoto R, Ooshio T, Hirota T, Morimoto K, Irie K, Takai Y. 2006. Requirement of nectin, but not cadherin, for formation of claudin-based tight junctions in annexin II-knockdown MDCK cells. Oncogene. 25(37):5085–5102.
  • Takai Y, Irie K, Shimizu K, Sakisaka T, Ikeda W. 2003. Nectins and nectin-like molecules: roles in cell adhesion, migration, and polarization. Cancer Sci. 94(8):655–667.
  • Takahashi K, Nakanishi H, Miyahara M, Mandai K, Satoh K, Satoh A, Nishioka H, Aoki J, Nomoto A, Mizoguchi A, et al. 1999. Nectin/PRR: an immunoglobulin-like cell adhesion molecule recruited to cadherin-based adherens junctions through interaction with afadin, a PDZ domain-containing protein. J Cell Biol. 145(3):539–549.
  • Mandai K, Nakanishi H, Satoh A, Obaishi H, Wada M, Nishioka H, Itoh M, Mizoguchi A, Aoki T, Fujimoto T, et al. 1997. Afadin: A novel actin filament-binding protein with one PDZ domain localized at cadherin-based cell-to-cell adherens junction. J Cell Biol. 139(2):517–528.
  • Takai Y, Miyoshi J, Ikeda W, Ogita H. 2008. Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nat Rev Mol Cell Biol. 9(8):603–615.
  • Geraghty RJ, Krummenacher C, Cohen GH, Eisenberg RJ, Spear PG. 1998. Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science. 280(5369):1618–1620.
  • Cocchi F, Menotti L, Mirandola P, Lopez M, Campadelli-Fiume G. 1998. The ectodomain of a novel member of the immunoglobulin subfamily related to the poliovirus receptor has the attributes of a bona fide receptor for herpes simplex virus types 1 and 2 in human cells. J Virol. 72(12):9992–10002.
  • Mühlebach MD, Mateo M, Sinn PL, Prüfer S, Uhlig KM, Leonard VHJ, Navaratnarajah CK, Frenzke M, Wong XX, Sawatsky B, et al. 2011. Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature. 480(7378):530–533.
  • Noyce RS, Bondre DG, Ha MN, Lin L-T, Sisson G, Tsao M-S, Richardson CD. 2011. Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus. PLoS Pathog. 7(8):e1002240.
  • Bayram H, Rusznak C, Khair O, Sapsford R, Abdelaziz M. 2002. Effect of ozone and nitrogen dioxide on the permeability of bronchial epithelial cell cultures of non‐asthmatic and asthmatic subjects. Clin Exp Allergy. 32(9):1285–1292.
  • Yu X-Y, Takahashi N, Croxton TL, Spannhake EW. 1994. Modulation of bronchial epithelial cell barrier function by in vitro ozone exposure. Environ Health Perspect. 102(12):1068–1072.
  • Kim BG, Lee PH, Lee SH, Park CS, Jang AS. 2018. Impact of ozone on claudins and tight junctions in the lungs. Environ Toxicol. 33(7):798–806.
  • Wang F, Daugherty B, Keise LL, Wei Z, Foley JP, Savani RC, Koval M. 2003. Heterogeneity of claudin expression by alveolar epithelial cells. Am J Respir Cell Mol Biol. 29(1):62–70.
  • Reinhart PG, Gupta SK, Bhalla DK. 1999. Attenuation of ozone-induced lung injury by interleukin-10. Toxicol Lett. 110(1-2):35–42.
  • Arsalane K, Broeckaert F, Knoops B, Clippe A, Buchet J-P, Bernard A. 1999. Increased serum and urinary concentrations of lung clara cell protein in rats acutely exposed to ozone. Toxicol Appl Pharmacol. 159(3):169–174.
  • Broeckaert F, Arsalane K, Hermans C, Bergamaschi E, Brustolin A, Mutti A, Bernard A. 2000. Serum clara cell protein: a sensitive biomarker of increased lung epithelium permeability caused by ambient ozone. Environ Health Perspect. 108(6):533–537.
  • Michaudel C, Fauconnier L, Julé Y, Ryffel B. 2018. Functional and morphological differences of the lung upon acute and chronic ozone exposure in mice. Sci Rep. 8(1):1–10.
  • Michaudel C, Mackowiak C, Maillet I, Fauconnier L, Akdis CA, Sokolowska M, Dreher A, Tan H-TT, Quesniaux VF, Ryffel B, et al. 2018. Ozone exposure induces respiratory barrier biphasic injury and inflammation controlled by IL-33. J Allergy Clin Immunol. 142(3):942–958.
  • Hubbell BJ, Hallberg A, McCubbin DR, Post E. 2005. Health-related benefits of attaining the 8-hr ozone standard. Environ Health Perspect. 113(1):73–82.
  • Que LG, Stiles JV, Sundy JS, Foster WM. 2011. Pulmonary function, bronchial reactivity, and epithelial permeability are response phenotypes to ozone and develop differentially in healthy humans. J Appl Physiol (1985). 111(3):679–687.
  • Blomberg A, Mudway I, Svensson M, Hagenbjörk-Gustafsson A, Thomasson L, Helleday R, Dumont X, Forsberg B, Nordberg G, Bernard A. 2003. Clara cell protein as a biomarker for ozone-induced lung injury in humans. Eur Respir J. 22(6):883–888.
  • Caraballo JC, Yshii C, Westphal W, Moninger T, Comellas AP. 2011. Ambient particulate matter affects occludin distribution and increases alveolar transepithelial electrical conductance. Respirology. 16(2):340–349.
  • Mutlu EA, Engen PA, Soberanes S, Urich D, Forsyth CB, Nigdelioglu R, Chiarella SE, Radigan KA, Gonzalez A, Jakate S, et al. 2011. Particulate matter air pollution causes oxidant-mediated increase in gut permeability in mice. Part Fibre Toxicol. 8(1):19–13.
  • Xian M, Ma S, Wang K, Lou H, Wang Y, Zhang L, Wang C, Akdis CA. 2020. Particulate matter 2.5 causes deficiency in barrier integrity in human nasal epithelial cells. Allergy Asthma Immunol Res. 12(1):56–71.
  • Sidhaye VK, Chau E, Breysse PN, King LS. 2011. Septin-2 mediates airway epithelial barrier function in physiologic and pathologic conditions. Am J Respir Cell Mol Biol. 45(1):120–126.
  • Lehmann AD, Blank F, Baum O, Gehr P, Rothen-Rutishauser BM. 2009. Diesel exhaust particles modulate the tight junction protein occludin in lung cells in vitro. Part Fibre Toxicol. 6(1):26–14.
  • Liu J, Chen X, Dou M, He H, Ju M, Ji S, Zhou J, Chen C, Zhang D, Miao C, et al. 2019. Particulate matter disrupts airway epithelial barrier via oxidative stress to promote Pseudomonas aeruginosa infection. J Thorac Dis. 11(6):2617–2627.
  • Kim N, Han DH, Suh M-W, Lee JH, Oh S-H, Park MK. 2019. Effect of lipopolysaccharide on diesel exhaust particle-induced junctional dysfunction in primary human nasal epithelial cells. Environ Pollut. 248:736–742.
  • Byun J, Song B, Lee K, Kim B, Hwang HW, Ok M-R, Jeon H, Lee K, Baek S-K, Kim S-H, et al. 2019. Identification of urban particulate matter-induced disruption of human respiratory mucosa integrity using whole transcriptome analysis and organ-on-a chip. J Biol Eng. 13(1):88.
  • Kim S-S, Kim CH, Kim JW, Kung HC, Park TW, Shin YS, Kim JD, Ryu S, Kim W-J, Choi YH, et al. 2017. Airborne particulate matter increases MUC5AC expression by downregulating Claudin-1 expression in human airway cells. BMB Rep. 50(10):516–521.
  • Thevenot PT, Saravia J, Jin N, Giaimo JD, Chustz RE, Mahne S, Kelley MA, Hebert VY, Dellinger B, Dugas TR, et al. 2013. Radical-containing ultrafine particulate matter initiates epithelial-to-mesenchymal transitions in airway epithelial cells. Am J Respir Cell Mol Biol. 48(2):188–197.
  • Morales-Bárcenas R, Chirino YI, Sánchez-Pérez Y, Osornio-Vargas ÁR, Melendez-Zajgla J, Rosas I, García-Cuellar CM. 2015. Particulate matter (PM10) induces metalloprotease activity and invasion in airway epithelial cells. Toxicol Lett. 237(3):167–173.
  • Illman SA, Lehti K, Keski-Oja J, Lohi J. 2006. Epilysin (MMP-28) induces TGF-beta mediated epithelial to mesenchymal transition in lung carcinoma cells . J Cell Sci. 119(Pt 18):3856–3865.
  • Cao J, Chiarelli C, Richman O, Zarrabi K, Kozarekar P, Zucker S. 2008. Membrane type 1 matrix metalloproteinase induces epithelial-to-mesenchymal transition in prostate cancer. J Biol Chem. 283(10):6232–6240.
  • Shintani Y, Maeda M, Chaika N, Johnson KR, Wheelock MJ. 2008. Collagen I promotes epithelial-to-mesenchymal transition in lung Cancer cells via transforming growth factor-beta signaling. Am J Respir Cell Mol Biol. 38(1):95–104.
  • Masszi A, Di Ciano C, Sirokmány G, Arthur WT, Rotstein OD, Wang J, McCulloch CA, Rosivall L, Mucsi I, Kapus A. 2003. Central role for Rho in TGF-beta1-induced alpha-smooth muscle actin expression during epithelial-mesenchymal transition. Am J Physiol Renal Physiol. 284(5):F911–F24.
  • Wang T, Moreno-Vinasco L, Huang Y, Lang GD, Linares JD, Goonewardena SN, Grabavoy A, Samet JM, Geyh AS, Breysse PN, et al. 2008. Murine lung responses to ambient particulate matter: genomic analysis and influence on airway hyperresponsiveness. Environ Health Perspect. 116(11):1500–1508.
  • Li X, Gilmour P, Donaldson K, MacNee W. 1996. Free radical activity and pro-inflammatory effects of particulate air pollution (PM10) in vivo and in vitro. Thorax. 51(12):1216–1222.
  • Li XY, Brown D, Smith S, MacNee W, Donaldson K. 1999. Short-term inflammatory responses following intratracheal instillation of fine and ultrafine carbon black in rats. Inhal Toxicol. 11(8):709–731.
  • Chuang H-C, Ho K-F, Cao J-J, Chuang K-J, Ho SSH, Feng P-H, Tian L, Lee C-H, Han Y-M, Lee C-N, et al. 2015. Effects of non-protein-type amino acids of fine particulate matter on E-cadherin and inflammatory responses in mice. Toxicol Lett. 237(3):174–180.
  • Frumkin H. 2002. Understanding the health effects of components of the particulate matter mix: progress and next steps. Cambridge (MA): Health Effects Institute.
  • Valavanidis A, Fiotakis K, Vlachogianni T. 2008. Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 26(4):339–362.
  • Deng Q, Deng L, Miao Y, Guo X, Li Y. 2019. Particle deposition in the human lung: Health implications of particulate matter from different sources. Environ Res. 169:237–245.
  • Houtmeyers E, Gosselink R, Gayan-Ramirez G, Decramer M. 1999. Regulation of mucociliary clearance in health and disease. Eur Respir J. 13(5):1177–1188.
  • Montgomery MT, Sajuthi SP, Cho S-H, Everman JL, Rios CL, Goldfarbmuren KC, Jackson ND, Saef B, Cromie M, Eng C, et al. 2020. Genome-wide analysis reveals mucociliary remodeling of the nasal airway epithelium induced by urban PM2. 5. Am J Respir Cell Mol Biol. 63(2):172–184.
  • Saldiva PH, King M, Delmonte V, Macchione M, Parada M, Daliberto M, Sakae R, Criado P, Parada P, Zin W. 1992. Respiratory alterations due to urban air pollution: an experimental study in rats. Environ Res. 57(1):19–33.
  • Calderón-Garcidueñas L, Rodríguez-Alcaraz A, Villarreal-Calderón A, Lyght O, Janszen D, Morgan KT. 1998. Nasal epithelium as a sentinel for airborne environmental pollution. Toxicol Sci. 46(2):352–364.
  • Calderón-Garcidueñas L, Valencia-Salazar G, Rodríguez-Alcaraz A, Gambling TM, García R, Osnaya N, Villarreal-Calderón A, Devlin RB, Carson JL. 2001. Ultrastructural nasal pathology in children chronically and sequentially exposed to air pollutants. Am J Respir Cell Mol Biol. 24(2):132–138.
  • Goto DM, Lança M, Obuti CA, Barbosa CMG, Saldiva PHN, Zanetta DMT, Lorenzi-Filho G, de Paula Santos U, Nakagawa NK. 2011. Effects of biomass burning on nasal mucociliary clearance and mucus properties after sugarcane harvesting. Environ Res. 111(5):664–669.
  • Rose MC, Voynow JA. 2006. Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol Rev. 86(1):245–278.
  • Thai P, Loukoianov A, Wachi S, Wu R. 2008. Regulation of airway mucin gene expression. Annu Rev Physiol. 70:405–429.
  • Ordoñez C L, Khashayar R, Wong H H, Ferrando RON, Wu REEN, Hyde D M, Hotchkiss J A, Zhang Y, Novikov A, Dolganov G, et al. 2001. Mild and moderate asthma is associated with airway goblet cell hyperplasia and abnormalities in mucin gene expression. Am J Respir Crit Care Med. 163(2):517–523.
  • Henderson AG, Ehre C, Button B, Abdullah LH, Cai L-H, Leigh MW, DeMaria GC, Matsui H, Donaldson SH, Davis CW, et al. 2014. Cystic fibrosis airway secretions exhibit mucin hyperconcentration and increased osmotic pressure. J Clin Invest. 124(7):3047–3060.
  • Kirkham S, Kolsum U, Rousseau K, Singh D, Vestbo J, Thornton DJ. 2008. MUC5B is the major mucin in the gel phase of sputum in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 178(10):1033–1039.
  • Zhu L, Lee P-k, Lee W-m, Zhao Y, Yu D, Chen Y. 2009. Rhinovirus-induced major airway mucin production involves a novel TLR3-EGFR-dependent pathway. Am J Respir Cell Mol Biol. 40(5):610–619.
  • Stokes KL, Chi MH, Sakamoto K, Newcomb DC, Currier MG, Huckabee MM, Lee S, Goleniewska K, Pretto C, Williams JV, et al. 2011. Differential pathogenesis of respiratory syncytial virus clinical isolates in BALB/c mice. J Virol. 85(12):5782–5793.
  • Barbier D, Garcia-Verdugo I, Pothlichet J, Khazen R, Descamps D, Rousseau K, Thornton D, Si-Tahar M, Touqui L, Chignard M, et al. 2012. Influenza A induces the major secreted airway mucin MUC5AC in a protease-EGFR-extracellular regulated kinase-Sp1-dependent pathway. Am J Respir Cell Mol Biol. 47(2):149–157.
  • Harkema JR, Hotchkiss JA, Henderson RF. 1989. Effects of 0.12 and 0.80 ppm ozone on rat nasal and nasopharyngeal epithelial mucosubstances: quantitative histochemistry. Toxicol Pathol. 17(3):525–535.
  • Wagner JG, Van Dyken SJ, Wierenga JR, Hotchkiss JA, Harkema JR. 2003. Ozone exposure enhances endotoxin-induced mucous cell metaplasia in rat pulmonary airways. Toxicol Sci. 74(2):437–446.
  • Harkema JR, Hotchkiss JA, Barr EB, Bennett CB, Gallup M, Lee JK, Basbaum C. 1999. Long-lasting effects of chronic ozone exposure on rat nasal epithelium. Am J Respir Cell Mol Biol. 20(3):517–529.
  • Kumagai K, Lewandowski R, Jackson-Humbles DN, Li N, Van Dyken SJ, Wagner JG, Harkema JR. 2016. Ozone-induced nasal type 2 immunity in mice is dependent on innate lymphoid cells. Am J Respir Cell Mol Biol. 54(6):782–791.
  • Kumagai K, Lewandowski RP, Jackson-Humbles DN, Buglak N, Li N, White K, Van Dyken SJ, Wagner JG, Harkema JR. 2017. Innate lymphoid cells mediate pulmonary eosinophilic inflammation, airway mucous cell metaplasia, and type 2 immunity in mice exposed to ozone. Toxicol Pathol. 45(6):692–704.
  • Harkema JR, Hotchkiss LA, Vetter NA, Jackson-Humbles DN, Lewandowski RP, Wagner JG. 2017. Strain differences in a murine model of air pollutant-induced nonatopic asthma and rhinitis. Toxicol Pathol. 45(1):161–171.
  • Okuda K, Chen G, Subramani DB, Wolf M, Gilmore RC, Kato T, Radicioni G, Kesimer M, Chua M, Dang H, et al. 2019. Localization of secretory mucins MUC5AC and MUC5B in normal/healthy human airways. Am J Respir Crit Care Med. 199(6):715–727.
  • Roy MG, Livraghi-Butrico A, Fletcher AA, McElwee MM, Evans SE, Boerner RM, Alexander SN, Bellinghausen LK, Song AS, Petrova YM, et al. 2014. Muc5b is required for airway defence. Nature. 505(7483):412–416.
  • Thornton DJ, Rousseau K, McGuckin MA. 2008. Structure and function of the polymeric mucins in airways mucus. Annu Rev Physiol. 70:459–486.
  • Xu F, Cao J, Luo M, Che L, Li W, Ying S, Chen Z, Shen H. 2018. Early growth response gene 1 is essential for urban particulate matter-induced inflammation and mucus hyperproduction in airway epithelium. Toxicol Lett. 294:145–155.
  • Chen Z-H, Wu Y-F, Wang P-L, Wu Y-P, Li Z-Y, Zhao Y, Zhou J-S, Zhu C, Cao C, Mao Y-Y, et al. 2016. Autophagy is essential for ultrafine particle-induced inflammation and mucus hyperproduction in airway epithelium. Autophagy. 12(2):297–311.
  • Wang J, Zhu M, Wang L, Chen C, Song Y. 2019. Amphiregulin potentiates airway inflammation and mucus hypersecretion induced by urban particulate matter via the EGFR-PI3Kα-AKT/ERK pathway. Cell Signal. 53:122–131.
  • Pires-Neto RC, Lichtenfels AJ, Soares SR, Macchione M, Saldiva PHN, Dolhnikoff M. 2006. Effects of São Paulo air pollution on the upper airways of mice. Environ Res. 101(3):356–361.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.