Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 34, 2022 - Issue 3-4
2,857
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Establishing an air-liquid interface exposure system for exposure of lung cells to gases

, ORCID Icon & ORCID Icon
Pages 80-89 | Received 10 Jun 2021, Accepted 19 Jan 2022, Published online: 25 Feb 2022

References

  • Alduchov OA, Eskridge RE. Improved Magnus` form approximation of saturation vapor pressure. 1997. Department of Commerce, Asheville, NC, United States. https://www.osti.gov/servlets/purl/548871.
  • Anderson SE, Khurshid SS, Meade BJ, Lukomska E, Wells JR. 2013. Toxicological analysis of limonene reaction products using an in vitro exposure system. Toxicol in Vitro. 27(2):721–730.
  • Aufderheide M, Förster C, Beschay M, Branscheid D, Emura M. 2016. A new computer-controlled air-liquid interface cultivation system for the generation of differentiated cell cultures of the airway epithelium. Exp Toxicol Pathol. 68(1):77–87.
  • Aufderheide M, Halter B, Möhle N, Hochrainer D. 2013. The CULTEX RFS: a comprehensive technical approach for the in vitro exposure of airway epithelial cells to the particulate matter at the air-liquid interface. Biomed Res Int. 2013:734137.
  • Bader H, Hoigné J. 1981. Determination of ozone in water by the indigo method. Water Res. 15(4):449–456.
  • Blank F, Rothen-Rutishauser BM, Schurch S, Gehr P. 2006. An optimized in vitro model of the respiratory tract wall to study particle cell interactions. J Aerosol Med. 19(3):392–405.
  • de Bruijne K, Ebersviller S, Sexton KG, Lake S, Leith D, Goodman R, Jetters J, Walters GW, Doyle-Eisele M, Woodside R, et al. 2009. Design and testing of electrostatic aerosol in vitro exposure system (EAVES): an alternative exposure system for particles. Inhal Toxicol. 21(2):91–101.
  • Déry R. 1973. The evolution of heat and moisture in the respiratory tract during anaesthesia with a non-rebreathing system. Can Anaesth Soc J. 20(3):296–309.
  • Diabaté S, Armand L, Murugadoss S, Dilger M, Fritsch-Decker S, Schlager C, Béal D, Arnal ME, Biola-Clier M, Ambrose S, et al. 2020. Air-liquid interface exposure of lung epithelial cells to low doses of nanoparticles to assess pulmonary adverse effects. Nanomaterials (Basel). 11(1):65.
  • Dvorak A, Tilley AE, Shaykhiev R, Wang R, Crystal RG. 2011. Do airway epithelium air-liquid cultures represent the in vivo airway epithelium transcriptome? Am J Respir Cell Mol Biol. 44(4):465–473.
  • Frijns E, Verstraelen S, Stoehr LC, Van Laer J, Jacobs A, Peters J, Tirez K, Boyles MSP, Geppert M, Madl P, et al. 2017. A novel exposure system termed NAVETTA for in vitro laminar flow electrodeposition of nanoaerosol and evaluation of immune effects in human lung reporter cells. Environ Sci Technol. 51(9):5259–5269.
  • Gonzalez RJ, Tarloff JB. 2001. Evaluation of hepatic subcellular fractions for Alamar blue and MTT reductase activity. Toxicol in Vitro. 15(3):257–259.
  • Guénette J, Hayes S, Vincent R. 1997. Stable gaseous atmospheres for nose-only inhalation using mass flow controllers. Toxicol. Mech. Methods. 7(2):77–89.
  • Lacroix G, Koch W, Ritter D, Gutleb AC, Larsen ST, Loret T, Zanetti F, Constant S, Chortarea S, Rothen-Rutishauser B, et al. 2018. Air-liquid interface in vitro models for respiratory toxicology research: consensus workshop and recommendations. Appl in Vitro Toxicol. 4(2):91–106.
  • Latvala S, Hedberg J, Möller L, Odnevall Wallinder I, Karlsson HL, Elihn K. 2016. Optimization of an air-liquid interface exposure system for assessing toxicity of airborne nanoparticles. J Appl Toxicol. 36(10):1294–1301.
  • Leibrock LB, Jungnickel H, Tentschert J, Katz A, Toman B, Petersen EJ, Bierkandt FS, Singh AV, Laux P, Luch A. 2020. Parametric optimization of an air-liquid interface system for flow-through inhalation exposure to nanoparticles: assessing dosimetry and intracellular uptake of CeO2 nanoparticles. Nanomaterials (Basel). 10(12):2369.
  • Lenz AG, Karg E, Lentner B, Dittrich V, Brandenberger C, Rothen-Rutishauser B, Schulz H, Ferron GA, Schmid O. 2009. A dose-controlled system for air-liquid interface cell exposure and application to zinc oxide nanoparticles. Part Fibre Toxicol. 6(1):32.
  • MedTec Biolab 2020. CelTox Sampler Guide to Operation, May 2020.
  • National Research Council 2008. (US) Committee on Estimating Mortality Risk Reduction Benefits from Decreasing Tropospheric Ozone Exposure. Estimating Mortality Risk Reduction and Economic Benefits from Controlling Ozone Air Pollution. Washington (DC): National Academies Press (US); 3, Ambient Ozone and Related Pollutants.
  • Pariselli F, Sacco MG, Rembges D. Dynamic in vitro exposure of human derived cells to indoor priority pollutants. European Commission, Directorate-General, Joint Research Centre. 2006. Report EUR 22285 EN: 1–36.
  • Persoz C, Achard S, Leleu C, Momas I, Seta N. 2010. An in vitro model to evaluate the inflammatory response after gaseous formaldehyde exposure of lung epithelial cells. Toxicol Lett. 195(2-3):99–105.
  • Ritter D, Knebel JW, Aufderheide M. 2001. In vitro exposure of isolated cells to native gaseous compounds-development and validation of an optimized system for human lung cells. Exp Toxicol Pathol. 53(5):373–386.
  • Savi M, Kalberer M, Lang D, Ryser M, Fierz M, Gaschen A, Ricka J, Geiser M. 2008. A novel exposure system for the efficient and controlled deposition of aerosol particles onto cell cultures. Environ Sci Technol. 42(15):5667–5674.
  • Schmidt CW. 2009. TOX 21: new dimensions of toxicity testing. Environ Health Perspect. 117(8):A348–A353.
  • Steinritz D, Möhle N, Pohl C, Papritz M, Stenger B, Schmidt A, Kirkpatrick CJ, Thiermann H, Vogel R, Hoffmann S, et al. 2013. Use of the Cultex® radial flow system as an in vitro exposure method to assess acute pulmonary toxicity of fine dusts and nanoparticles with special focus on the intra- and inter-laboratory reproducibility. Chem Biol Interact. 206(3):479–490.
  • Tang T, Gminski R, Könczöl M, Modest C, Armbruster B, Mersch-Sundermann V. 2012. Investigations on cytotoxic and genotoxic effects of laser printer emissions in human epithelial A549 lung cells using an air/liquid exposure system. Environ Mol Mutagen. 53(2):125–135.
  • Tarkington BK, Wu R, Sun WM, Nikula KJ, Wilson DW, Last JA. 1994. In vitro exposure of tracheobronchial epithelial cells and of tracheal explants to ozone. Toxicology. 88(1-3):51–68.
  • Upadhyay S, Palmberg L. 2018. Air-liquid interface: relevant in vitro models for investigating air pollutant-induced pulmonary toxicity. Toxicol Sci. 164(1):21–30.
  • Volckens J, Dailey L, Walters G, Devlin RB. 2009. Direct particle-to-cell deposition of coarse ambient particulate matter increases the production of inflammatory mediators from cultured human airway epithelial cells. Environ Sci Technol. 43(12):4595–4599.
  • Wu J, Wang Y, Liu G, Jia Y, Yang J, Shi J, Dong J, Wei J, Liu X. 2017. Characterization of air-liquid interface culture of A549 alveolar epithelial cells. Braz J Med Biol Res. 51(2):e6950.
  • Xie Y, Williams NG, Tolic A, Chrisler WB, Teeguarden JG, Maddux BL, Pounds JG, Laskin A, Orr G. 2012. Aerosolized ZnO nanoparticles induce toxicity in alveolar type II epithelial cells at the air-liquid interface. Toxicol Sci. 125(2):450–461.
  • Zavala J, Greenan R, Krantz QT, DeMarini DM, Higuchi M, Gilmour MI, White PA. 2017. Regulating temperature and relative humidity in air-liquid interface in vitro systems eliminates cytotoxicity resulting from control air exposures. Toxicol Res. 6(4):448–459.
  • Zavala J, Lichtveld K, Ebersviller S, Carson JL, Walters GW, Jaspers I, Jeffries HE, Sexton KG, Vizuete W. 2014. The Gillings sampler-an electrostatic air sampler as an alternative method for aerosol in vitro exposure studies. Chem Biol Interact. 220:158–168.