Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 34, 2022 - Issue 13-14
234
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Modeling of clearance, retention, and translocation of inhaled gold nanoparticles in rats

, , , , &
Pages 361-379 | Received 15 Jun 2022, Accepted 11 Aug 2022, Published online: 02 Sep 2022

References

  • Aborig M, Malik PRV, Nambiar S, Chelle P, Darko J, Mutsaers A, Edginton AN, Fleck A, Osei E, Wettig S. 2019. Biodistribution and physiologically-based pharmacokinetic modeling of gold nanoparticles in mice with interspecies extrapolation. Pharmaceutics. 11(4):179.
  • ARA. 2009. Multiple-path particle dosimetry model (MPPD) (3.04). Raleigh, NC: Applied Research Associates, Inc.
  • Bachler G, Losert S, Umehara Y, von Goetz N, Rodriguez-Lorenzo L, Petri-Fink A, Rothen-Rutishauser B, Hungerbuehler K. 2015. Translocation of gold nanoparticles across the lung epithelial tissue barrier: combining in vitro and in silico methods to substitute in vivo experiments. Part Fibre Toxicol. 12(1):18.
  • Bachler G, von Goetz N, Hungerbühler K. 2013. A physiologically based pharmacokinetic model for ionic silver and silver nanoparticles. Int J Nanomedicine. 8:3365–3382.
  • Bachler G, von Goetz N, Hungerbuhler K. 2015. Using physiologically based pharmacokinetic (PBPK) modeling for dietary risk assessment of titanium dioxide (TiO2) nanoparticles. Nanotoxicology. 9(3):373–380.
  • Balasubramanian SK, Poh KW, Ong CN, Kreyling WG, Ong WY, Yu LE. 2013. The effect of primary particle size on biodistribution of inhaled gold nano-agglomerates. Biomaterials. 34(22):5439–5452.
  • Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP. 1997. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health. 13(4):407–484.
  • Chen YS, Hung YC, Liau I, Huang GS. 2009. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett. 4(8):858–864.
  • Cheng YH, Riviere JE, Monteiro-Riviere NA, Lin Z. 2018. Probabilistic risk assessment of gold nanoparticles after intravenous administration by integrating in vitro and in vivo toxicity with physiologically based pharmacokinetic modeling. Nanotoxicology. 12(5):453–469.
  • Cho W-S, Cho M, Jeong J, Choi M, Han BS, Shin H-S, Hong J, Chung BH, Jeong J, Cho M-H. 2010. Size-dependent tissue kinetics of PEG-coated gold nanoparticles. Toxicol Appl Pharmacol. 245(1):116–123.
  • Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, Bawendi MG, Frangioni JV. 2007. Renal clearance of quantum dots. Nat Biotechnol. 25(10):1165–1170.
  • Deng L, Liu H, Ma Y, Miao Y, Fu X, Deng Q. 2019. Endocytosis mechanism in physiologically-based pharmacokinetic modeling of nanoparticles. Toxicol Appl Pharmacol. 384:114765.
  • Du B, Yu M, Zheng J. 2018. Transport and interactions of nanoparticles in the kidneys. Nat Rev Mater. 3(10):358–374.
  • Dubaj T, Kozics K, Sramkova M, Manova A, Bastús NG, Moriones OH, Kohl Y, Dusinska M, Runden-Pran E, Puntes V, et al. 2022. Pharmacokinetics of PEGylated gold nanoparticles: in vitro–in vivo correlation. Nanomaterials. 12(3):511.
  • Hamzawy MA, Abo-Youssef AM, Salem HF, Mohammed SA. 2017. Antitumor activity of intratracheal inhalation of temozolomide (TMZ) loaded into gold nanoparticles and/or liposomes against urethane-induced lung cancer in BALB/c mice. Drug Deliv. 24(1):599–607.
  • Han SG, Lee JS, Ahn K, Kim YS, Kim JK, Lee JH, Shin JH, Jeon KS, Cho WS, Song NW, et al. 2015. Size-dependent clearance of gold nanoparticles from lungs of Sprague–Dawley rats after short-term inhalation exposure. Arch Toxicol. 89(7):1083–1094.
  • Hao Y, Altundal Y, Moreau M, Sajo E, Kumar R, Ngwa W. 2015. Potential for enhancing external beam radiotherapy for lung cancer using high-Z nanoparticles administered via inhalation. Phys Med Biol. 60(18):7035–7043.
  • Hosseini-Yeganeh M, McLachlan AJ. 2002. Physiologically based pharmacokinetic model for terbinafine in rats and humans. Antimicrob Agents Chemother. 46(7):2219–2228.
  • Hu X, Zhang Y, Ding T, Liu J, Zhao H. 2020. Multifunctional gold nanoparticles: a novel nanomaterial for various medical applications and biological activities. Front Bioeng Biotechnol. 8(August):990.
  • [IPCS] International Programme on Chemical Safety & Inter-Organization Programme for the Sound Management. 2010. Characterization and application of physiologically based pharmacokinetic models. IPCS Harmonization Project Document; no. 9.
  • Kreyling WG, Hirn S, Möller W, Schleh C, Wenk A, Celik G, Lipka J, Schäffler M, Haberl N, Johnston BD, et al. 2014. Air–blood barrier translocation of tracheally instilled gold nanoparticles inversely depends on particle size. ACS Nano. 8(1):222–233.
  • Kreyling WG, Holzwarth U, Haberl N, Kozempel J, Wenk A, Hirn S, Schleh C, Schäffler M, Lipka J, Semmler-Behnke M, et al. 2017. Quantitative biokinetics of titanium dioxide nanoparticles after intratracheal instillation in rats: part 3. Nanotoxicology. 11(4):454–464.
  • Kreyling WG, Möller W, Holzwarth U, Hirn S, Wenk A, Schleh C, Schäffler M, Haberl N, Gibson N, Schittny JC. 2018. Age-dependent rat lung deposition patterns of inhaled 20 nanometer gold nanoparticles and their quantitative biokinetics in adult rats. ACS Nano. 12(8):7771–7790.
  • Kuempel E, Tran C, Castranova V, Bailer A. 2006. Lung dosimetry and risk assessment of nanoparticles: evaluating and extending current models in rats and humans. Inhal Toxicol. 18(10):717–724.
  • Li D, Morishita M, Wagner JG, Fatouraie M, Wooldridge M, Eagle WE, Barres J, Carlander U, Emond C, Jolliet O. 2016. In vivo biodistribution and physiologically based pharmacokinetic modeling of inhaled fresh and aged cerium oxide nanoparticles in rats. Part Fibre Toxicol. 13(1):45.
  • Li M, Reineke J. 2012. Physiologically based pharmacokinetic modeling for nanoparticle toxicity study. In: Reineke J, editor. Nanotoxicity. Methods in Molecular Biology, Vol. 926. Totowa, NJ: Humana Press; p. 369–382.
  • Liao CM, Chiang YH, Chio CP. 2008. Model-based assessment for human inhalation exposure risk to airborne nano/fine titanium dioxide particles. Sci Total Environ. 407(1):165–177.
  • Lin Z, Monteiro-Riviere NA, Kannan R, Riviere JE. 2016. A computational framework for interspecies pharmacokinetics, exposure and toxicity assessment of gold nanoparticles. Nanomedicine. 11(2):107–119.
  • Lin Z, Monteiro-Riviere NA, Riviere JE. 2016. A physiologically based pharmacokinetic model for polyethylene glycol-coated gold nanoparticles of different sizes in adult mice. Nanotoxicology. 10(2):162–172.
  • Luu HMD, Hutter JC, Bushar HF. 1998. A physiologically based pharmacokinetic model for 2,4-toluenediamine leached from polyurethane foam-covered breast implants. Environ Health Perspect. 106(7):393–400.
  • MacCalman L, Tran CL. 2009. Development and extension of a bio-mathematical model in rats to describe particle size-specific clearance and translocation of inhaled particles and early biological responses. Institute of Occupational Medicine Research Report TM/09/03.
  • MacCalman L, Tran CL, Kuempel E. 2009. Development of a bio-mathematical model in rats to describe clearance, retention and translocation of inhaled nano particles throughout the body. J Phys Conf Ser. 151(September):012028.
  • Mager DE, Mody V, Xu C, Forrest A, Lesniak WG, Nigavekar SS, Kariapper MT, Minc L, Khan MK, Balogh LP. 2012. Physiologically based pharmacokinetic model for composite nanodevices: effect of charge and size on in vivo disposition. Pharm Res. 29(9):2534–2542.
  • Miller MR, Raftis JB, Langrish JP, McLean SG, Samutrtai P, Connell SP, Wilson S, Vesey AT, Fokkens PHB, Boere AJF, et al. 2017. Inhaled nanoparticles accumulate at sites of vascular disease. ACS Nano. 11(5):4542–4552.
  • Péry ARR, Brochot C, Hoet PHM, Nemmar A, Bois FY. 2009. Development of a physiologically based kinetic model for 99m-Technetium-labelled carbon nanoparticles inhaled by humans Human PBPK model for carbon nanoparticles. Inhal Toxicol. 21(13):1099–1107.
  • Pletz J, Blakeman S, Paini A, Parissis N, Worth A, Andersson AM, Frederiksen H, Sakhi AK, Thomsen C, Bopp SK. 2020. Physiologically based kinetic (PBK) modelling and human biomonitoring data for mixture risk assessment. Environ Int. 143(July):105978.
  • Sung JH, Ji JH, Park JD, Song MY, Song KS, Ryu HR, Yoon JU, Jeon KS, Jeong J, Han BS, et al. 2011. Subchronic inhalation toxicity of gold nanoparticles. Part Fibre Toxicol. 8:16–18.
  • Sweeney LM, MacCalman L, Haber LT, Kuempel ED, Tran CL. 2015. Bayesian evaluation of a physiologically-based pharmacokinetic (PBPK) model of long-term kinetics of metal nanoparticles in rats. Regul Toxicol Pharmacol. 73(1):151–163.
  • Teeguarden JG, Deisinger PJ, Poet TS, English JC, Faber WD, Barton HA, Corley RA, Clewell HJ III. 2005. Derivation of a human equivalent concentration for n-butanol using a physiologically based pharmacokinetic model for n-butyl acetate and metabolites n-butanol and n-butyric acid. Toxicol Sci. 85(1):429–446.
  • Tran CL, Jones AD, Cullen RT, Donaldson K. 1999. Mathematical modeling of the retention and clearance of low-toxicity particles in the lung. Inhal Toxicol. 11(12):1059–1076.
  • Tran CL, Kuempel ED, Castranova V. 2002. A rat lung model of exposure, dose and response to inhaled silica. Ann Occup Hyg. 46:14–17.
  • Utembe W, Clewell HJ, Sanabria N, Doganis P, Gulumian M. 2020. Current approaches and techniques in physiologically based pharmacokinetic (PBPK) modelling of nanomaterials. Nanomaterials. 10(7):1267.
  • Wang C, Yu C. 2013. Detection of chemical pollutants in water using gold nanoparticles as sensors: a review. Rev Anal Chem. 32(1):1–14.
  • Zhou YG, Rees NV, Pillay J, Tshikhudo R, Vilakazi S, Compton RG. 2012. Gold nanoparticles show electroactivity: counting and sorting nanoparticles upon impact with electrodes. Chem Commun. 48(2):224–226.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.