Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 36, 2024 - Issue 2
246
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Comparison of the effects of active and passive smoking of tobacco cigarettes, electronic nicotine delivery systems and tobacco heating products on the expression and secretion of oxidative stress and inflammatory response markers. A systematic review

&
Pages 75-89 | Received 16 Oct 2023, Accepted 09 Feb 2024, Published online: 23 Feb 2024

References

  • Adams T, Wan E, Wei Y, Wahab R, Castagna F, Wang G, Emin M, Russo C, Homma S, Le Jemtel TH, et al. 2015. Secondhand smoking is associated with vascular inflammation. Chest. 148(1):112–119. doi: 10.1378/chest.14-2045.
  • Ahmadkhaniha R, Yousefian F, Rastkari N. 2021. Impact of smoking on oxidant/antioxidant status and oxidative stress index levels in serum of the university students. J Environ Health Sci Eng. 19(1):1043–1046. doi: 10.1007/s40201-021-00669-y.
  • Alawsi F, Nour R, Prabhu S. 2015. Are e-cigarettes a gateway to smoking or a pathway to quitting? Br Dent J. 219(3):111–115. doi: 10.1038/sj.bdj.2015.591.
  • Alnajem A, Redha A, Alroumi D, Alshammasi A, Ali M, Alhussaini M, Almutairi W, Esmaeil A, Ziyab AH. 2020. Use of electronic cigarettes and secondhand exposure to their aerosols are associated with asthma symptoms among adolescents: a cross-sectional study. Respir Res. 21(1):300. doi: 10.1186/s12931-020-01569-9.
  • Anthérieu S, Garat A, Beauval N, Soyez M, Allorge D, Garçon G, Lo-Guidice J-M. 2017. Comparison of cellular and transcriptomic effects between electronic cigarette vapor and cigarette smoke in human bronchial epithelial cells. Toxicol in Vitro. 45(Pt 3):417–425. doi: 10.1016/j.tiv.2016.12.015.
  • Attard R, Dingli P, Doggen CJM, Cassar K, Farrugia R, Wettinger SB. 2017. The impact of passive and active smoking on inflammation, lipid profile and the risk of myocardial infarction. Open Heart. 4(2):e000620. doi: 10.1136/openhrt-2017-000620.
  • Ballbè M, Martínez-Sánchez JM, Sureda X, Fu M, Pérez-Ortuño R, Pascual JA, Saltó E, Fernández E. 2014. Cigarettes vs. e-cigarettes: passive exposure at home measured by means of airborne marker and biomarkers. Environ Res. 135:76–80. doi: 10.1016/j.envres.2014.09.005.
  • Beauval N, Antherieu S, Soyez M, Gengler N, Grova N, Howsam M, Hardy EM, Fischer M, Appenzeller BMR, Goossens J-F, et al. 2017. Chemical evaluation of electronic cigarettes: multicomponent analysis of liquid refills and their corresponding aerosols. J Anal Toxicol. 41(8):670–678. doi: 10.1093/jat/bkx054.
  • Been T, Traboulsi H, Paoli S, Alakhtar B, Mann KK, Eidelman DH, Baglole CJ. 2022. Differential impact of JUUL flavors on pulmonary immune modulation and oxidative stress responses in male and female mice. Arch Toxicol. 96(6):1783–1798. doi: 10.1007/s00204-022-03269-3.
  • Begum R, Thota S, Batra S. 2023. Interplay between proteasome function and inflammatory responses in e-cig vapor condensate-challenged lung epithelial cells. Arch Toxicol. 97(8):2193–2208. doi: 10.1007/s00204-023-03504-5.
  • Bekki K, Inaba Y, Uchiyama S, Kunugita N. 2017. Comparison of chemicals in mainstream smoke in heat-not-burn tobacco and combustion cigarettes. J Uoeh. 39(3):201–207. doi: 10.7888/juoeh.39.201.
  • Bernard A, Ku JM, Vlahos R, Miller AA. 2019. Cigarette smoke extract exacerbates hyperpermeability of cerebral endothelial cells after oxygen glucose deprivation and reoxygenation. Sci Rep. 9(1):15573. doi: 10.1038/s41598-019-51728-2.
  • Bhat TA, Kalathil SG, Bogner PN, Miller A, Lehmann PV, Thatcher TH, Phipps RP, Sime PJ, Thanavala Y. 2018. Secondhand smoke induces inflammation and impairs immunity to respiratory infections. J Immunol. 200(8):2927–2940. doi: 10.4049/jimmunol.1701417.
  • Bhat TA, Kalathil SG, Leigh N, Muthumalage T, Rahman I, Goniewicz ML, Thanavala YM. 2021. Acute effects of heated tobacco product (IQOS) aerosol inhalation on lung tissue damage and inflammatory changes in the lungs. Nicotine Tob Res. 23(7):1160–1167. doi: 10.1093/ntr/ntaa267.
  • Bono R, Bellisario V, Romanazzi V, Pirro V, Piccioni P, Pazzi M, Bugiani M, Vincenti M. 2014. Oxidative stress in adolescent passive smokers living in urban and rural environments. Int J Hyg Environ Health. 217(2-3):287–293. doi: 10.1016/j.ijheh.2013.06.008.
  • Bosio A, Knörr C, Janssen U, Gebel S, Haussmann H-J, Müller T. 2002. Kinetics of gene expression profiling in Swiss 3T3 cells exposed to aqueous extracts of cigarette smoke. Carcinogenesis. 23(5):741–748. doi: 10.1093/carcin/23.5.741.
  • Butterfield DA, Koppal T, Howard B, Subramaniam R, Hall N, Hensley K, Yatin S, Allen K, Aksenov M, Aksenova M, et al. 1998. Structural and functional changes in proteins induced by free radical-mediated oxidative stress and protective action of the antioxidants N-tert-butyl-alpha-phenylnitrone and vitamin E. Ann N Y Acad Sci. 854(1):448–462. doi: 10.1111/j.1749-6632.1998.tb09924.x.
  • CDCTobaccoFree. 2021a. Health Effects of Cigarette Smoking. Cent Dis Control Prev [Internet]. [accessed 2022 Apr 11]. https://www.cdc.gov/tobacco/data_statistics/fact_sheets/health_effects/effects_cig_smoking/index.htm.
  • CDCTobaccoFree. 2021b. Secondhand Smoke (SHS) Facts. Cent Dis Control Prev [Internet]. [accessed 2022 Apr 7]. https://www.cdc.gov/tobacco/data_statistics/fact_sheets/secondhand_smoke/general_facts/index.htm.
  • Cervellati F, Muresan XM, Sticozzi C, Gambari R, Montagner G, Forman HJ, Torricelli C, Maioli E, Valacchi G. 2014. Comparative effects between electronic and cigarette smoke in human keratinocytes and epithelial lung cells. Toxicol in Vitro. 28(5):999–1005. doi: 10.1016/j.tiv.2014.04.012.
  • Chan YL, Saad S, Pollock C, Oliver B, Al-Odat I, Zaky AA, Jones N, Chen H. 2016. Impact of maternal cigarette smoke exposure on brain inflammation and oxidative stress in male mice offspring. Sci Rep. 6(1):25881. doi: 10.1038/srep25881.
  • Chatterjee S, Tao J-Q, Johncola A, Guo W, Caporale A, Langham MC, Wehrli FW. 2019. Acute exposure to e-cigarettes causes inflammation and pulmonary endothelial oxidative stress in nonsmoking, healthy young subjects. Am J Physiol Lung Cell Mol Physiol. 317(2):L155–L166. doi: 10.1152/ajplung.00110.2019.
  • Cirillo S, Vivarelli F, Turrini E, Fimognari C, Burattini S, Falcieri E, Rocchi MBL, Cardenia V, Rodriguez-Estrada MT, Paolini M, et al. 2019. The customizable e-cigarette resistance influences toxicological outcomes: lung degeneration, inflammation, and oxidative stress-induced in a rat model. Toxicol Sci. 172(1):132–145. doi: 10.1093/toxsci/kfz176.
  • Comandini A, Marzano V, Curradi G, Federici G, Urbani A, Saltini C. 2010. Markers of anti-oxidant response in tobacco smoke exposed subjects: a data-mining review. Pulm Pharmacol Ther. 23(6):482–492. doi: 10.1016/j.pupt.2010.05.006.
  • Coultas DB. 1998. Passive smoking and risk of adult asthma and COPD: an update. Britton JR, Weiss ST, editors. Thorax. 53(5):381–387. doi: 10.1136/thx.53.5.381.
  • Czogala J, Goniewicz ML, Fidelus B, Zielinska-Danch W, Travers MJ, Sobczak A. 2014. Secondhand exposure to vapors from electronic cigarettes. Nicotine Tob Res. 16(6):655–662. doi: 10.1093/ntr/ntt203.
  • Davis B, Williams M, Talbot P. 2019. iQOS: evidence of pyrolysis and release of a toxicant from plastic. Tob Control. 28(1):34–41. doi: 10.1136/tobaccocontrol-2017-054104.
  • Di Biase A, Attorri L, Di Benedetto R, Sanchez M. 2018. Comparative effects between electronic cigarette and tobacco cigarette smoke on oxidative markers in cultured immune cells isolated from rats. Ann Ist Super Sanita. 54(4):300–307. doi: 10.4415/ANN_18_04_06.
  • Dizdaroglu M, Jaruga P. 2012. Mechanisms of free radical-induced damage to DNA. Free Radic Res. 46(4):382–419. doi: 10.3109/10715762.2011.653969.
  • Edmiston JS, Webb KM, Wang J, Oliveri D, Liang Q, Sarkar M. 2022. Biomarkers of exposure and biomarkers of potential harm in adult smokers who switch to e-vapor products relative to cigarette smoking in a 24-week, randomized, clinical trial. Nicotine Tob Res. 24(7):1047–1054. doi: 10.1093/ntr/ntac029.
  • Engle ML, Monk JN, Jania CM, Martin JR, Gomez JC, Dang H, Parker JS, Doerschuk CM. 2019. Dynamic changes in lung responses after single and repeated exposures to cigarette smoke in mice. Yildirim AÖ, editor. PLoS One. 14(2):e0212866. doi: 10.1371/journal.pone.0212866.
  • Farsalinos KE, Yannovits N, Sarri T, Voudris V, Poulas K. 2018. Nicotine delivery to the aerosol of a heat-not-burn tobacco product: comparison with a tobacco cigarette and e-cigarettes. Nicotine Tob Res. 20(8):1004–1009. doi: 10.1093/ntr/ntx138.
  • Farsalinos KE, Yannovits N, Sarri T, Voudris V, Poulas K, Leischow SJ. 2018. Carbonyl emissions from a novel heated tobacco product (IQOS): comparison with an e-cigarette and a tobacco cigarette: carbonyl emissions in heated tobacco product. Addiction. 113(11):2099–2106. doi: 10.1111/add.14365.
  • Ferraro M, Gjomarkaj M, Siena L, Di Vincenzo S, Pace E. 2017. Formoterol and fluticasone propionate combination improves histone deacetylation and anti-inflammatory activities in bronchial epithelial cells exposed to cigarette smoke. Biochim Biophys Acta Mol Basis Dis. 1863(7):1718–1727. doi: 10.1016/j.bbadis.2017.05.003.
  • Fields WR, Leonard RM, Odom PS, Nordskog BK, Ogden MW, Doolittle DJ. 2005. Gene expression in normal human bronchial epithelial (NHBE) cells following in vitro exposure to cigarette smoke condensate. Toxicol Sci. 86(1):84–91. doi: 10.1093/toxsci/kfi179.
  • Flouris AD, Chorti MS, Poulianiti KP, Jamurtas AZ, Kostikas K, Tzatzarakis MN, Wallace Hayes A, Tsatsakis AM, Koutedakis Y. 2013. Acute impact of active and passive electronic cigarette smoking on serum cotinine and lung function. Inhal Toxicol. 25(2):91–101. doi: 10.3109/08958378.2012.758197.
  • Galiatsatos P, Gomez E, Lin CT, Illei PB, Shah P, Neptune E. 2020. Secondhand smoke from electronic cigarette resulting in hypersensitivity pneumonitis. BMJ Case Rep. 13(3):e233381. doi: 10.1136/bcr-2019-233381.
  • Ganguly K, Nordström A, Thimraj TA, Rahman M, Ramström M, Sompa SI, Lin EZ, O’Brien F, Koelmel J, Ernstgård L, et al. 2020. Addressing the challenges of E-cigarette safety profiling by assessment of pulmonary toxicological response in bronchial and alveolar mucosa models. Sci Rep. 10(1):20460. doi: 10.1038/s41598-020-77452-w.
  • Garcia-Arcos I, Geraghty P, Baumlin N, Campos M, Dabo AJ, Jundi B, Cummins N, Eden E, Grosche A, Salathe M, et al. 2016. Chronic electronic cigarette exposure in mice induces features of COPD in a nicotine-dependent manner. Thorax. 71(12):1119–1129. doi: 10.1136/thoraxjnl-2015-208039.
  • García-Gómez D, Gaisl T, Barrios-Collado C, Vidal-de-Miguel G, Kohler M, Zenobi R. 2016. Real-Time Chemical Analysis of E-Cigarette Aerosols By Means Of Secondary Electrospray Ionization Mass Spectrometry. Chemistry. 22(7):2452–2457. doi: 10.1002/chem.201504450.
  • Gebel S, Gerstmayer B, Bosio A, Haussmann H-J, Van Miert E, Müller T. 2003. Gene expression profiling in respiratory tissues from rats exposed to mainstream cigarette smoke. Carcinogenesis. 25(2):169–178. doi: 10.1093/carcin/bgg193.
  • Geiss O, Bianchi I, Barahona F, Barrero-Moreno J. 2015. Characterisation of mainstream and passive vapours emitted by selected electronic cigarettes. Int J Hyg Environ Health. 218(1):169–180. doi: 10.1016/j.ijheh.2014.10.001.
  • Ghosh A, Coakley RC, Mascenik T, Rowell TR, Davis ES, Rogers K, Webster MJ, Dang H, Herring LE, Sassano MF, et al. 2018. Chronic E-cigarette exposure alters the human bronchial epithelial proteome. Am J Respir Crit Care Med. 198(1):67–76. doi: 10.1164/rccm.201710-2033OC.
  • Ghosh A, Coakley RD, Ghio AJ, Muhlebach MS, Esther CR, Alexis NE, Tarran R. 2019. Chronic E-cigarette use increases neutrophil elastase and matrix metalloprotease levels in the lung. Am J Respir Crit Care Med. 200(11):1392–1401. doi: 10.1164/rccm.201903-0615OC.
  • Giebe S, Cockcroft N, Hewitt K, Brux M, Hofmann A, Morawietz H, Brunssen C. 2017. Cigarette smoke extract counteracts atheroprotective effects of high laminar flow on endothelial function. Redox Biol. 12:776–786. doi: 10.1016/j.redox.2017.04.008.
  • Glynos C, Bibli S-I, Katsaounou P, Pavlidou A, Magkou C, Karavana V, Topouzis S, Kalomenidis I, Zakynthinos S, Papapetropoulos A. 2018. Comparison of the effects of e-cigarette vapor with cigarette smoke on lung function and inflammation in mice. Am J Physiol Lung Cell Mol Physiol. 315(5):L662–L672. doi: 10.1152/ajplung.00389.2017.
  • Goel R, Durand E, Trushin N, Prokopczyk B, Foulds J, Elias RJ, Richie JP. 2015. Highly reactive free radicals in electronic cigarette aerosols. Chem Res Toxicol. 28(9):1675–1677. doi: 10.1021/acs.chemrestox.5b00220.
  • Gomaa HA, El Shafie MF, Mohamed KY. 2016. Cigarette smoking provoked proinflammatory cytokines and oxidative stress in healthy smokers. Int J Pharm Clin Res. 8(6):578–582.
  • Gometz ED. 2011. Health effects of smoking and the benefits of quitting. Virtual Mentor. 13(1):31.
  • Hahn J, Monakhova YB, Hengen J, Kohl-Himmelseher M, Sch?ssler J, Hahn H, Kuballa T, Lachenmeier DW. 2014. Electronic cigarettes: overview of chemical composition and exposure estimation. Tob Induced Dis. 12(1):23. doi: 10.1186/s12971-014-0023-6.
  • Hansen EC, Walters J, Wood Baker R. 2007. Explaining chronic obstructive pulmonary disease (COPD): perceptions of the role played by smoking: chronic obstructive pulmonary disease and cigarette smoking. Sociol Health Illn. 29(5):730–749. doi: 10.1111/j.1467-9566.2007.01013.x.
  • Health (US) O on S and 2006. Toxicology of Secondhand Smoke. [place unknown]Centers for Disease Control and Prevention (US); [accessed 2022 Apr 7]. https://www.ncbi.nlm.nih.gov/books/NBK44321/.
  • Hickman E, Payton A, Duffney P, Wells H, Ceppe AS, Brocke S, Bailey A, Rebuli ME, Robinette C, Ring B, et al. 2022. Biomarkers of airway immune homeostasis differ significantly with generation of e-cigarettes. Am J Respir Crit Care Med. 206 (10):1248–1258. doi: 10.1164/rccm.202202-0373OC.
  • Hinds DM, Nick HJ, Vallin TM, Bloomquist LA, Christeson S, Bratcher PE, Cooper EH, Brinton JT, Bosco-Lauth A, White CW. 2022. Acute vaping in a golden Syrian hamster causes inflammatory response transcriptomic changes. Am J Physiol Lung Cell Mol Physiol. 323(5):L525–L535. doi: 10.1152/ajplung.00162.2022.
  • Huang J, Jiang W, Tong X, Zhang L, Zhang Y, Fan H. 2019. Identification of gene and microRNA changes in response to smoking in human airway epithelium by bioinformatics analyses. Medicine (Baltimore). 98(38):e17267. doi: 10.1097/MD.0000000000017267.
  • Husari A, Shihadeh A, Talih S, Hashem Y, El Sabban M, Zaatari G. 2016. Acute exposure to electronic and combustible cigarette aerosols: effects in an animal model and in human alveolar cells. Nicotine Tob Res. 18(5):613–619. doi: 10.1093/ntr/ntv169.
  • Iskandar AR, Martin F, Leroy P, Schlage WK, Mathis C, Titz B, Kondylis A, Schneider T, Vuillaume G, Sewer A, et al. 2018. Comparative biological impacts of an aerosol from carbon-heated tobacco and smoke from cigarettes on human respiratory epithelial cultures: a systems toxicology assessment. Food Chem Toxicol. 115:109–126. doi: 10.1016/j.fct.2018.02.063.
  • Iskandar AR, Martinez Y, Martin F, Schlage WK, Leroy P, Sewer A, Torres LO, Majeed S, Merg C, Trivedi K, et al. 2017. Comparative effects of a candidate modified-risk tobacco product Aerosol and cigarette smoke on human organotypic small airway cultures: a systems toxicology approach. Toxicol Res (Camb). 6(6):930–946. doi: 10.1039/C7TX00152E.
  • Iskandar AR, Mathis C, Martin F, Leroy P, Sewer A, Majeed S, Kuehn D, Trivedi K, Grandolfo D, Cabanski M, et al. 2017. 3-D nasal cultures: systems toxicological assessment of a candidate modified-risk tobacco product. ALTEX - Altern Anim Exp. 34(1):23–48. doi: 10.14573/altex.1605041.
  • Iskandar AR, Mathis C, Schlage WK, Frentzel S, Leroy P, Xiang Y, Sewer A, Majeed S, Ortega-Torres L, Johne S, et al. 2017. A systems toxicology approach for comparative assessment: biological impact of an aerosol from a candidate modified-risk tobacco product and cigarette smoke on human organotypic bronchial epithelial cultures. Toxicol in Vitro. 39:29–51. doi: 10.1016/j.tiv.2016.11.009.
  • Ito Y, Oshinden K, Kutsuzawa N, Kohno C, Isaki S, Yokoyama K, Sato T, Tanaka M, Asano K. 2020. Heat-not-burn cigarette induces oxidative stress response in primary rat alveolar epithelial cells. PLoS One. 15(11):e0242789. doi: 10.1371/journal.pone.0242789.
  • Izzotti A, Cartiglia C, Longobardi M, Balansky RM, D'Agostini F, Lubet RA, De Flora S. 2004. Alterations of gene expression in skin and lung of mice exposed to light and cigarette smoke. Faseb J. 18(13):1559–1561. doi: 10.1096/fj.04-1877fje.
  • Jacob RA. 2009. Passive Smoking Induces Oxidant Damage Preventable by Vitamin C. Nutr Rev. 58(8):239–241. doi: 10.1111/j.1753-4887.2000.tb01872.x.
  • John G, Kohse K, Orasche J, Reda A, Schnelle-Kreis J, Zimmermann R, Schmid O, Eickelberg O, Yildirim A. 2014. The composition of cigarette smoke determines inflammatory cell recruitment to the lung in COPD mouse models. Clin Sci (Lond). 126(3):207–221. doi: 10.1042/CS20130117.
  • Jordan RE, Cheng KK, Miller MR, Adab P. 2011. Passive smoking and chronic obstructive pulmonary disease: cross-sectional analysis of data from the Health Survey for England. BMJ Open. 1(2):e000153–e000153. doi: 10.1136/bmjopen-2011-000153.
  • Kahraman FU, Torun E, Osmanoğlu NK, Oruçlu S, Özer ÖF. 2017. Serum oxidative stress parameters and paraoxonase-1 in children and adolescents exposed to passive smoking. Pediatr Int. 59(1):68–73. doi: 10.1111/ped.13073.
  • Khanna A, Guo M, Mehra M, Royal W. 2013. Inflammation and oxidative stress induced by cigarette smoke in Lewis rat brains. J Neuroimmunol. 254(1-2):69–75. doi: 10.1016/j.jneuroim.2012.09.006.
  • Kim HY, Ihm SH, Cho EJ, Jeon DS, Baek SH, Youn HJ, Lee MY, Chung WS, Kim CJ, Seung KB, et al. 2006. Is systemic inflammation associated with passive smoke exposure? a population-based observational study. Korean Circ J. 36(7):510. doi: 10.4070/kcj.2006.36.7.510.
  • Laniado-Laborín R. 2009. Smoking and chronic obstructive pulmonary disease (COPD). Parallel epidemics of the 21st century. Int J Environ Res Public Health. 6(1):209–224. doi: 10.3390/ijerph6010209.
  • Leigh NJ, Palumbo MN, Marino AM, O’Connor RJ, Goniewicz ML. 2018. Tobacco-specific nitrosamines (TSNA) in heated tobacco product IQOS. Tob Control. 27(Suppl 1):s37–s38. doi: 10.1136/tobaccocontrol-2018-054318.
  • Leigh NJ, Tran PL, O’Connor RJ, Goniewicz ML. 2018. Cytotoxic effects of heated tobacco products (HTP) on human bronchial epithelial cells. Tob Control. 27(Suppl 1):s26–s29. doi: 10.1136/tobaccocontrol-2018-054317.
  • Lerner CA, Sundar IK, Yao H, Gerloff J, Ossip DJ, McIntosh S, Robinson R, Rahman I. 2015. Vapors produced by electronic cigarettes and e-juices with flavorings induce toxicity, oxidative stress, and inflammatory response in lung epithelial cells and in mouse lung. Khan MF, editor. PLoS One. 10(2):e0116732. doi: 10.1371/journal.pone.0116732.
  • Li J, Tong D, Liu J, Chen F, Shen Y. 2016. Oroxylin A attenuates cigarette smoke-induced lung inflammation by activating Nrf2. Int Immunopharmacol. 40:524–529. doi: 10.1016/j.intimp.2016.10.011.
  • Li P, Peng J, Chen G, Chen F, Shen Y, Liu L, Chen L. 2022. DNA methylation profiling in a cigarette smoke-exposed mouse model of airway inflammation. Int J Chron Obstruct Pulmon Dis. 17:2443–2450. doi: 10.2147/COPD.S369702.
  • Lim HB, Kim SH. 2014. Inhalation of e-cigarette cartridge solution aggravates allergen-induced airway inflammation and hyper-responsiveness in mice. Toxicol Res. 30(1):13–18. doi: 10.5487/TR.2014.30.1.013.
  • Liu J, Liang Q, Oldham M, Rostami A, Wagner K, Gillman I, Patel P, Savioz R, Sarkar M. 2017. Determination of selected chemical levels in room air and on surfaces after the use of cartridge- and tank-based e-vapor products or conventional cigarettes. Int J Environ Res Public Health. 14(9):969. doi: 10.3390/ijerph14090969.
  • Llinàs L, Peinado VI, Ramon Goñi J, Rabinovich R, Pizarro S, Rodriguez-Roisin R, Barberà JA, Bastos R. 2011. Similar gene expression profiles in smokers and patients with moderate COPD. Pulm Pharmacol Ther. 24(1):32–41. doi: 10.1016/j.pupt.2010.10.010.
  • Loffredo L, Carnevale R, Battaglia S, Marti R, Pizzolo S, Bartimoccia S, Nocella C, Cammisotto V, Sciarretta S, Chimenti I, et al. 2021. Impact of chronic use of heat-not-burn cigarettes on oxidative stress, endothelial dysfunction and platelet activation: the SUR-VAPES Chronic Study. Thorax. 76(6):618–620. doi: 10.1136/thoraxjnl-2020-215900.
  • Ma T, Wang X, Li L, Sun B, Zhu Y, Xia T. 2021. Electronic cigarette aerosols induce oxidative stress-dependent cell death and NF-κB mediated acute lung inflammation in mice. Arch Toxicol. 95(1):195–205. doi: 10.1007/s00204-020-02920-1.
  • MacNee W. 2005. Pathogenesis of chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2(4):258–266. doi: 10.1513/pats.200504-045SR.
  • Marnett LJ. 1999. Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res. 424(1-2):83–95. doi: 10.1016/s0027-5107(99)00010-x.
  • Martin EM, Clapp PW, Rebuli ME, Pawlak EA, Glista-Baker E, Benowitz NL, Fry RC, Jaspers I. 2016. E-cigarette use results in suppression of immune and inflammatory-response genes in nasal epithelial cells similar to cigarette smoke. Am J Physiol Lung Cell Mol Physiol. 311(1):L135–L144. doi: 10.1152/ajplung.00170.2016.
  • Martínez-Sánchez JM, Ballbè M, Pérez-Ortuño R, Fu M, Sureda X, Pascual JA, Peruga A, Fernández E. 2019. Secondhand exposure to aerosol from electronic cigarettes: pilot study of assessment of tobacco-specific nitrosamine (NNAL) in urine. Gac Sanit. 33(6):575–578. doi: 10.1016/j.gaceta.2018.07.016.
  • Marwick JA, Kirkham P, Gilmour PS, Donaldson K, MacNEE W, Rahman I. 2002. Cigarette smoke-induced oxidative stress and tgf-β1 increase p21 waf1/cip1 expression in alveolar epithelial cells. Ann N Y Acad Sci. 973(1):278–283. doi: 10.1111/j.1749-6632.2002.tb04649.x.
  • McGuinness A, Sapey E. 2017. Oxidative stress in COPD: sources, markers, and potential mechanisms. J Clin Med. 6(2):21. doi: 10.3390/jcm6020021.
  • McKelvey K, Popova L, Kim M, Chaffee BW, Vijayaraghavan M, Ling P, Halpern-Felsher B. 2018. Heated tobacco products likely appeal to adolescents and young adults. Tob Control. 27(Suppl 1):s41–s47. doi: 10.1136/tobaccocontrol-2018-054596.
  • Mitova MI, Campelos PB, Goujon-Ginglinger CG, Maeder S, Mottier N, Rouget EGR, Tharin M, Tricker AR. 2016. Comparison of the impact of the Tobacco Heating System 2.2 and a cigarette on indoor air quality. Regul Toxicol Pharmacol. 80:91–101. doi: 10.1016/j.yrtph.2016.06.005.
  • Mohammad Y, Shaaban R, Al-Zahab BA, Khaltaev N, Bousquet J, Dubaybo B. 2013. Impact of active and passive smoking as risk factors for asthma and COPD in women presenting to primary care in Syria: first report by the WHO-GARD survey group. Int J Chron Obstruct Pulmon Dis. 8:473–482. doi: 10.2147/COPD.S50551.
  • Mottier N, Tharin M, Cluse C, Crudo J-R, Lueso MG, Goujon-Ginglinger CG, Jaquier A, Mitova MI, Rouget EGR, Schaller M, et al. 2016. Validation of selected analytical methods using accuracy profiles to assess the impact of a Tobacco Heating System on indoor air quality. Talanta. 158:165–178. doi: 10.1016/j.talanta.2016.05.022.
  • Munakata S, Ishimori K, Kitamura N, Ishikawa S, Takanami Y, Ito S. 2018. Oxidative stress responses in human bronchial epithelial cells exposed to cigarette smoke and vapor from tobacco- and nicotine-containing products. Regul Toxicol Pharmacol. 99:122–128. doi: 10.1016/j.yrtph.2018.09.009.
  • Muthumalage T, Lamb T, Friedman MR, Rahman I. 2019. E-cigarette flavored pods induce inflammation, epithelial barrier dysfunction, and DNA damage in lung epithelial cells and monocytes. Sci Rep. 9(1):19035. doi: 10.1038/s41598-019-51643-6.
  • Naeem Z. 2015. Second-hand smoke – ignored implications. Int J Health Sci (Qassim). 9(2):V–VI. doi: 10.12816/0024103.
  • Nitta NA, Sato T, Komura M, Yoshikawa H, Suzuki Y, Mitsui A, Kuwasaki E, Takahashi F, Kodama Y, Seyama K, et al. 2022. Exposure to the heated tobacco product IQOS generates apoptosis-mediated pulmonary emphysema in murine lungs. Am J Physiol Lung Cell Mol Physiol. 322[(5):L699–L711. accessed 2023 Dec 1. doi: 10.1152/ajplung.00215.2021.
  • Oldham MJ, Bailey PC, Castro N, Lang Q, Salehi A, Rostami AA. 2021. Prediction of potential passive exposure from commercial electronic nicotine delivery systems using exhaled breath analysis and computational fluid dynamic techniques. J Breath Res. 15(4):046006. doi: 10.1088/1752-7163/ac2884.
  • Ayres PH, Hayes JR, Higuchi MA, Mosberg AT, Sagartz JW. 2001. Subchronic inhalation by rats of mainstream smoke from a cigarette that primarily heats tobacco compared to a cigarette that burns tobacco. Inhal Toxicol. 13(2):149–186. doi: 10.1080/089583701300001078.
  • Perez MF, Mead EL, Atuegwu NC, Mortensen EM, Goniewicz M, Oncken C. 2021. Biomarkers of toxicant exposure and inflammation among women of reproductive age who use electronic or conventional cigarettes. J Womens Health (Larchmt). 30(4):539–550. doi: 10.1089/jwh.2019.8075.
  • Peruzzi M, Cavarretta E, Frati G, Carnevale R, Miraldi F, Biondi-Zoccai G, Sciarretta S, Versaci F, Cammalleri V, Avino P, et al. 2020. Comparative indoor pollution from glo, iqos, and juul, using traditional combustion cigarettes as benchmark: evidence from the randomized SUR-VAPES AIR Trial. Int J Environ Res Public Health. 17(17):6029. doi: 10.3390/ijerph17176029.
  • Pierrou S, Broberg P, O'Donnell RA, Pawłowski K, Virtala R, Lindqvist E, Richter A, Wilson SJ, Angco G, Möller S, et al. 2007. Expression of genes involved in oxidative stress responses in airway epithelial cells of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 175(6):577–586. doi: 10.1164/rccm.200607-931OC.
  • Pozuelos GL, Kagda M, Rubin MA, Goniewicz ML, Girke T, Talbot P. 2022. Transcriptomic evidence that switching from tobacco to electronic cigarettes does not reverse damage to the respiratory epithelium. Toxics. 10(7):370. doi: 10.3390/toxics10070370.
  • Protano C, Manigrasso M, Cammalleri V, Biondi Zoccai G, Frati G, Avino P, Vitali M. 2020. Impact of electronic alternatives to tobacco cigarettes on indoor air particular matter levels. Int J Environ Res Public Health. 17(8):2947. doi: 10.3390/ijerph17082947.
  • Qiu F, Liang C-L, Liu H, Zeng Y-Q, Hou S, Huang S, Lai X, Dai Z. 2017. Impacts of cigarette smoking on immune responsiveness: up and down or upside down? Oncotarget. 8(1):268–284. doi: 10.18632/oncotarget.13613.
  • Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, Fukuchi Y, Jenkins C, Rodriguez-Roisin R, van Weel C, et al. 2007. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 176(6):532–555. doi: 10.1164/rccm.200703-456SO.
  • Rangasamy T, Misra V, Zhen L, Tankersley CG, Tuder RM, Biswal S. 2009. Cigarette smoke-induced emphysema in A/J mice is associated with pulmonary oxidative stress, apoptosis of lung cells, and global alterations in gene expression. Am J Physiol Lung Cell Mol Physiol. 296(6):L888–L900. doi: 10.1152/ajplung.90369.2008.
  • Rankin GD, Wingfors H, Uski O, Hedman L, Ekstrand-Hammarström B, Bosson J, Lundbäck M. 2019. The toxic potential of a fourth-generation E-cigarette on human lung cell lines and tissue explants. J Appl Toxicol. 39(8):1143–1154. doi: 10.1002/jat.3799.
  • Reidel B, Radicioni G, Clapp PW, Ford AA, Abdelwahab S, Rebuli ME, Haridass P, Alexis NE, Jaspers I, Kesimer M. 2018. E-cigarette use causes a unique innate immune response in the lung, involving increased neutrophilic activation and altered mucin secretion. Am J Respir Crit Care Med. 197(4):492–501. doi: 10.1164/rccm.201708-1590OC.
  • Rennard SI, Umino T, Millatmal T, Daughton DM, Manouilova LS, Ullrich FA, Patil KD, Romberger DJ, Floreani AA, Anderson JR. 2002. Evaluation of subclinical respiratory tract inflammation in heavy smokers who switch to a cigarette-like nicotine delivery device that primarily heats tobacco. Nicotine Tob Res. 4(4):467–476. doi: 10.1080/1462220021000018407.
  • Ritchie H, Roser M. 2022. Smoking. Our World Data [Internet]. [accessed 2022 Apr 11]. https://ourworldindata.org/smoking.
  • Rosenkilde Laursen K, Bønløkke JH, Bendstrup E, Bilde M, Glasius M, Heitmann Gutzke V, Puthukkadan Moosakutty S, Olin A-C, Ravn P, Østergaard K, et al. 2021. An RCT of acute health effects in COPD-patients after passive vape exposure from e-cigarettes. Eur Clin Respir J. 8(1):1861580. doi: 10.1080/20018525.2020.1861580.
  • Ryan DM, Vincent TL, Salit J, Walters MS, Agosto-Perez F, Shaykhiev R, Strulovici-Barel Y, Downey RJ, Buro-Auriemma LJ, Staudt MR, et al. 2014. Smoking dysregulates the human airway basal cell transcriptome at COPD risk locus 19q13.2. Hartl D, editor. PLoS One. 9(2):e88051. doi: 10.1371/journal.pone.0088051.
  • Saffari A, Daher N, Ruprecht A, De Marco C, Pozzi P, Boffi R, Hamad SH, Shafer MM, Schauer JJ, Westerdahl D, et al. 2014. Particulate metals and organic compounds from electronic and tobacco-containing cigarettes: comparison of emission rates and secondhand exposure. Environ Sci Process Impacts. 16(10):2259–2267. doi: 10.1039/C4EM00415A.
  • Salman R, Talih S, El-Hage R, Haddad C, Karaoghlanian N, El-Hellani A, Saliba NA, Shihadeh A. 2018. Free-base and total nicotine, reactive oxygen species, and carbonyl emissions from iqos, a heated tobacco product. Nicotine Tob Res. 21(9):1285–1288. doi: 10.1093/ntr/nty235.
  • Samet JM. 2004. Adverse effects of smoke exposure on the upper airway. Tob Control. 13(Suppl 1):i57–i60. doi: 10.1136/tc.2003.005454.
  • Savdie J, Canha N, Buitrago N, Almeida SM. 2020. Passive exposure to pollutants from a new generation of cigarettes in real life scenarios. Int J Environ Res Public Health. 17(10):3455. doi: 10.3390/ijerph17103455.
  • Scharf P, Da Rocha GHO, Sandri S, Heluany CS, Pedreira Filho WR, Farsky SHP. 2021. Immunotoxic mechanisms of cigarette smoke and heat-not-burn tobacco vapor on Jurkat T cell functions. Environ Pollut. 268(Pt B):115863. doi: 10.1016/j.envpol.2020.115863.
  • Schober W, Fembacher L, Frenzen A, Fromme H. 2019. Passive exposure to pollutants from conventional cigarettes and new electronic smoking devices (IQOS, e-cigarette) in passenger cars. Int J Hyg Environ Health. 222(3):486–493. doi: 10.1016/j.ijheh.2019.01.003.
  • Scott A, Lugg ST, Aldridge K, Lewis KE, Bowden A, Mahida RY, Grudzinska FS, Dosanjh D, Parekh D, Foronjy R, et al. 2018. Pro-inflammatory effects of e-cigarette vapour condensate on human alveolar macrophages. Thorax. 73(12):1161–1169. doi: 10.1136/thoraxjnl-2018-211663.
  • Sekine T, Hirata T, Ishikawa S, Ito S, Ishimori K, Matsumura K, Muraki K. 2019. Regulation of NRF2, AP‐1 and NF‐κB by cigarette smoke exposure in three‐dimensional human bronchial epithelial cells. J Appl Toxicol. 39(5):717–725. doi: 10.1002/jat.3761.
  • Shen Y, Wolkowicz MJ, Kotova T, Fan L, Timko MP. 2016. Transcriptome sequencing reveals e-cigarette vapor and mainstream-smoke from tobacco cigarettes activate different gene expression profiles in human bronchial epithelial cells. Sci Rep. [accessed 20176(1):23984.] doi: 10.1038/srep23984.
  • Shen YH, Pham AK, Davis B, Smiley-Jewell S, Wang L, Kodavanti UP, Takeuchi M, Tancredi DJ, Pinkerton KE. 2016. Sex and strain-based inflammatory response to repeated tobacco smoke exposure in spontaneously hypertensive and Wistar Kyoto rats. Inhal Toxicol. 28(14):677–685. doi: 10.1080/08958378.2016.1249812.
  • Sidhaye VK, Holbrook JT, Burke A, Sudini KR, Sethi S, Criner GJ, Fahey JW, Berenson CS, Jacobs MR, Thimmulappa R, et al. 2019. Compartmentalization of anti-oxidant and anti-inflammatory gene expression in current and former smokers with COPD. Respir Res. 20(1):190. doi: 10.1186/s12931-019-1164-1.
  • Singh KP, Lawyer G, Muthumalage T, Maremanda KP, Khan NA, McDonough SR, Ye D, McIntosh S, Rahman I. 2019. Systemic biomarkers in electronic cigarette users: implications for noninvasive assessment of vaping-associated pulmonary injuries. ERJ Open Res. 5(4):00182–2019. doi: 10.1183/23120541.00182-2019.
  • Soleimani F, Dobaradaran S, De-la-Torre GE, Schmidt TC, Saeedi R. 2022. Content of toxic components of cigarette, cigarette smoke vs cigarette butts: a comprehensive systematic review. Sci Total Environ. 813:152667. doi: 10.1016/j.scitotenv.2021.152667.
  • Solleti SK, Bhattacharya S, Ahmad A, Wang Q, Mereness J, Rangasamy T, Mariani TJ. 2017. MicroRNA expression profiling defines the impact of electronic cigarettes on human airway epithelial cells. Sci Rep. 7(1):1081. doi: 10.1038/s41598-017-01167-8.
  • Son Y, Giovenco DP, Delnevo C, Khlystov A, Samburova V, Meng Q. 2020. Indoor air quality and passive e-cigarette aerosol exposures in vape-shops. Nicotine Tob Res. 22(10):1772–1779. doi: 10.1093/ntr/ntaa094.
  • Song JJ, Go YY, Lee JK, Lee BS, Park SK, Jung H, Lee JH, Chang J. 2020. Transcriptomic analysis of tobacco-flavored E-cigarette and menthol-flavored E-cigarette exposure in the human middle ear. Sci Rep. 10(1):20799. doi: 10.1038/s41598-020-77816-2.
  • Song M-A, Reisinger SA, Freudenheim JL, Brasky TM, Mathé EA, McElroy JP, Nickerson QA, Weng DY, Wewers MD, Shields PG. 2020. Effects of electronic cigarette constituents on the human lung: a pilot clinical trial. Cancer Prev Res (Phila). 13(2):145–152. doi: 10.1158/1940-6207.CAPR-19-0400.
  • Starrett W, Blake DJ. 2011. Sulforaphane inhibits de novo synthesis of IL-8 and MCP-1 in human epithelial cells generated by cigarette smoke extract. J Immunotoxicol. 8(2):150–158. doi: 10.3109/1547691X.2011.558529.
  • Statista. 2021. Number of smokers by region worldwide 2000-2025. Statista [Internet]. [accessed 2022 Apr 11]. https://www.statista.com/statistics/937526/tobacco-smoking-numbers-globally-by-region/.
  • Stewart JC, Hyde RW, Boscia J, Chow M-Y, O'Mara RE, Perillo I, Pietropaoli A, Smith CJ, Torres A, Utell MJ, et al. 2006. Changes in markers of epithelial permeability and inflammation in chronic smokers switching to a nonburning tobacco device (Eclipse). Nicotine Tob Res. 8(6):773–783. doi: 10.1080/14622200601004091.
  • Sullivan L, Alexander LEC. 2022. A problem for generations: impact of e-cigarette type on immune homeostasis. Am J Respir Crit Care Med. 206accessed 2023 Nov 28(10):1195–1197. doi: 10.1164/rccm.202207-1247ED.
  • Sun YW, Chen KM, Atkins H, Aliaga C, Gordon T, Guttenplan JB, El-Bayoumy K. 2021. Effects of E-cigarette aerosols with varying levels of nicotine on biomarkers of oxidative stress and inflammation in mice. Chem Res Toxicol. 34(4):1161–1168. doi: 10.1021/acs.chemrestox.1c00033.
  • Sundar IK, Javed F, Romanos GE, Rahman I. 2016. E-cigarettes and flavorings induce inflammatory and pro-senescence responses in oral epithelial cells and periodontal fibroblasts. Oncotarget. 7(47):77196–77204. doi: 10.18632/oncotarget.12857.
  • Sussan TE, Gajghate S, Thimmulappa RK, Ma J, Kim J-H, Sudini K, Consolini N, Cormier SA, Lomnicki S, Hasan F, others., et al. 2015. Exposure to electronic cigarettes impairs pulmonary anti-bacterial and anti-viral defenses in a mouse model. PLoS One. 10(2):e0116861. doi: 10.1371/journal.pone.0116861.
  • Talhout R, Schulz T, Florek E, van Benthem J, Wester P, Opperhuizen A. 2011. Hazardous compounds in tobacco smoke. Int J Environ Res Public Health. 8(2):613–628. doi: 10.3390/ijerph8020613.
  • Tamimi A, Serdarevic D, Hanania NA. 2012. The effects of cigarette smoke on airway inflammation in asthma and COPD: therapeutic implications. Respir Med. 106(3):319–328. doi: 10.1016/j.rmed.2011.11.003.
  • Tilley AE, Harvey B-G, Heguy A, Hackett NR, Wang R, O'Connor TP, Crystal RG. 2009. Down-regulation of the notch pathway in human airway epithelium in association with smoking and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 179(6):457–466. doi: 10.1164/rccm.200705-795OC.
  • Titz B, Sewer A, Luettich K, Wong ET, Guedj E, Nury C, Schneider T, Xiang Y, Trivedi K, Vuillaume G, et al. 2020. Respiratory effects of exposure to aerosol from the candidate modified-risk tobacco product THS 2.2 in an 18-month systems toxicology study with A/J mice. Toxicol Sci. 178(1):138–158.,. doi: 10.1093/toxsci/kfaa132.
  • Tuder RM, Petrache I. 2012. Pathogenesis of chronic obstructive pulmonary disease. J Clin Invest. 122(8):2749–2755. doi: 10.1172/JCI60324.
  • Tzortzi A, Teloniatis S, Matiampa G, Bakelas G, Tzavara C, Vyzikidou VK, Vardavas C, Behrakis P, Fernandez E, Fernández E, et al. 2020. Passive exposure of non-smokers to E-Cigarette aerosols: sensory irritation, timing and association with volatile organic compounds. Environ Res. 182:108963. doi: 10.1016/j.envres.2019.108963.
  • Van Der Does AM, Mahbub RM, Ninaber DK, Rathnayake SNH, Timens W, Van Den Berge M, Aliee H, Theis FJ, Nawijn MC, Hiemstra PS, et al. 2022. Early transcriptional responses of bronchial epithelial cells to whole cigarette smoke mirror those of in-vivo exposed human bronchial mucosa. Respir Res. 23(1):227. doi: 10.1186/s12931-022-02150-2.
  • Van Eeden SF, Sin DD. 2013. Oxidative stress in chronic obstructive pulmonary disease: a lung and systemic process. Can Respir J. 20(1):27–29. doi: 10.1155/2013/509130.
  • Vardavas C, Panagiotakos D. 2009. The causal relationship between passive smoking and inflammation on the development of cardiovascular disease: a review of the evidence. Inflamm Allergy Drug Targets. 8(5):328–333. doi: 10.2174/1871528110908050328.
  • Wang L, Liu X, Chen L, Liu D, Yu T, Bai R, Yan L, Zhou J. 2020. Harmful chemicals of heat not burn product and its induced oxidative stress of macrophages at air-liquid interface: comparison with ultra-light cigarette. Toxicol Lett. 331:200–207. doi: 10.1016/j.toxlet.2020.06.017.
  • Wang S, Song X, Wei L, Liu Q, Li C, Wang J. 2023. Role of mitophagy in cigarette smoke-induced lung epithelial cell injury in vitro. Curr Mol Med. 23(10):1130–1140. [accessed 2023 May 8]. doi: 10.2174/1566524023666221025100002.
  • Wasowicz A, Feleszko W, Goniewicz ML. 2015. E-Cigarette use among children and young people: the need for regulation. Expert Rev Respir Med. 9(5):507–509. doi: 10.1586/17476348.2015.1077120.
  • Wetherill RR, Doot RK, Young AJ, Lee H, Schubert EK, Wiers CE, Leone FT, Mach RH, Kranzler HR, Dubroff JG. 2023. Molecular imaging of pulmonary inflammation in users of electronic and combustible cigarettes: a pilot study. J Nucl Med. 64(5):797–802. doi: 10.2967/jnumed.122.264529.
  • WHO. 2021. Tobacco [Internet]. [accessed 2022 Apr 11]. https://www.who.int/news-room/fact-sheets/detail/tobacco.
  • Wong ET, Szostak J, Titz B, Lee T, Wong SK, Lavrynenko O, Merg C, Corciulo M, Simicevic J, Auberson M, et al. 2021. A 6-month inhalation toxicology study in Apoe−/− mice demonstrates substantially lower effects of e-vapor aerosol compared with cigarette smoke in the respiratory tract. Arch Toxicol. 95(5):1805–1829. doi: 10.1007/s00204-021-03020-4.
  • Wu Q, Jiang D, Minor M, Chu HW. 2014. Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells. PLoS One. 9(9):e108342. doi: 10.1371/journal.pone.0108342.
  • Xiong R, Wu Y, Wu Q, Muskhelishvili L, Davis K, Tripathi P, Chen Y, Chen T, Bryant M, Rosenfeldt H, et al. 2021. Integration of transcriptome analysis with pathophysiological endpoints to evaluate cigarette smoke toxicity in an in vitro human airway tissue model. Arch Toxicol. 95(5):1739–1761. doi: 10.1007/s00204-021-03008-0.
  • Ye D, Gajendra S, Lawyer G, Jadeja N, Pishey D, Pathagunti S, Lyons J, Veazie P, Watson G, McIntosh S, et al. 2020. Inflammatory biomarkers and growth factors in saliva and gingival crevicular fluid of e-cigarette users, cigarette smokers, and dual smokers: A pilot study. J Periodontol. 91(10):1274–1283. doi: 10.1002/JPER.19-0457.
  • Zanetti F, Sewer A, Mathis C, Iskandar AR, Kostadinova R, Schlage WK, Leroy P, Majeed S, Guedj E, Trivedi K, et al. 2016. Systems toxicology assessment of the biological impact of a candidate modified risk tobacco product on human organotypic oral epithelial cultures. Chem Res Toxicol. 29(8):1252–1269. doi: 10.1021/acs.chemrestox.6b00174.
  • Zanetti F, Sewer A, Scotti E, Titz B, Schlage WK, Leroy P, Kondylis A, Vuillaume G, Iskandar AR, Guedj E, et al. 2018. Assessment of the impact of aerosol from a potential modified risk tobacco product compared with cigarette smoke on human organotypic oral epithelial cultures under different exposure regimens. Food Chem Toxicol. 115:148–169. doi: 10.1016/j.fct.2018.02.062.
  • Zanetti F, Titz B, Sewer A, Lo Sasso G, Scotti E, Schlage WK, Mathis C, Leroy P, Majeed S, Torres LO, et al. 2017. Comparative systems toxicology analysis of cigarette smoke and aerosol from a candidate modified risk tobacco product in organotypic human gingival epithelial cultures: A 3-day repeated exposure study. Food Chem Toxicol. 101:15–35. doi: 10.1016/j.fct.2016.12.027.
  • Zhang W, Zhang Y, Zhu Q. 2022. Cigarette smoke extract-mediated FABP4 upregulation suppresses viability and induces apoptosis, inflammation and oxidative stress of bronchial epithelial cells by activating p38 MAPK/MK2 signaling pathway. J Inflamm. 19(1):7. doi: 10.1186/s12950-022-00304-z.
  • Zhou J, Qi C, Fang X, Wang Z, Zhang S, Li D, Song J. 2021. DJ-1 modulates Nrf2-mediated MRP1 expression by activating Wnt3a/β-catenin signalling in A549 cells exposed to cigarette smoke extract and LPS. Life Sci. 276:119089. doi: 10.1016/j.lfs.2021.119089.
  • Zou N, Hong J, Dai Q. 2009. Passive cigarette smoking induces inflammatory injury in human arterial walls. Chin Med J (Engl). 122(4):444–448. doi: 10.3760/cma.j.issn.0366-6999.2009.04.0016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.