Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 11, 1999 - Issue 12
158
Views
97
CrossRef citations to date
0
Altmetric
Research Article

IN VITRO EFFECTS OF COAL FLY ASHES: Hydroxyl Radical Generation, Iron Release, and DNA Damage and Toxicity in Rat Lung Epithelial Cells

Pages 1123-1141 | Published online: 01 Oct 2008

References

  • Arts, J. H. E., Penninks, A. H., and Hoeksema, H. W. 1994. Toxicity of coal fly ash and lytag dust upon intratracheal instillation. In Toxic and carcinogenic effects of solid particles in the respira-tory tract, ed. U. Mohr, pp. 443–446. Washington, DC: ILSI Press.
  • Borm, P. J. A. 1997. Toxicity and occupational health hazards of coal fly ash (CFA). A review of data and comparison with coal mine dust. Ann. Occup. Hyg. 41:659–676.
  • Churg, A., Qay, K., and Li, K. 1997. Mechanisms of mineral dust-induced emphysema. Environ. Health Perspect. 105\(suppl. 5):1215–1218.
  • Dalal, N. S., Suryan, M. M., Vallyathan, V., Green, F. H. Y., Jafari, B., and Wheeler, R. 1989. Detection of reactive free radicals in fresh coal mine dust and their implication for pulmonary injury. Ann. Occup. Hyg. 33:79–84.
  • Dalal, N. S., Yafari, B., Petersen, M., Green, F. H. Y., and Vallyathan, V. 1991. Presence of stable coal radicals in autopsied coal miners' lungs and its possible correlation to coal workers' pneu-moconiosis. Arch. Environ. Health 46:366–372.
  • Dalal, N. S., Newman, J., Pack, D., Leonard, S., and Vallyathan, V. 1995. Hydroxyl radical genera-tion by coal mine dust: Possible implication to coal workers' pneumoconiosis (CWP). Free Radical Biol. Med. 18:11–20.
  • de Kok, T. M. C. M., van Maanen, J. M. S., Lankelma, J., ten Hoor, F., and Kleinjans, J. C. S. 1992. Electron spin resonance spectroscopy of oxygen radicals generated by synthetic fecapentaene-12 and reduction of fecapentaene mutagenicity to Salmonella typhimurium by hydroxyl radical scavenging. Carcinogenesis13:1249–1255.
  • Donaldson, K., and Borm, P. J. A. 1998. The quartz hazard: A variable entity. Ann. Occup. Hyg. 42: 287–294.
  • Donaldson K., Brown, D. M., Mitchell, C., Dineva, M., Beswick, P. H., Gilmour, P., and MacNee, W. 1997. Free radical activity of PM10: Iron-mediated generation of hydroxyl radicals. Environ. Health Perspect. 105\(suppl. 5):1285–1289.
  • Dreher, K. L., Jaskot, R. H., Lehmann, J. R., Richards, J. H., McGee, J. K., Ghio, A. J., and Costa, D. L. 1997. Soluble transition metals mediate residual oil fly-ash induced acute lung injury.]. ToxicoL Environ. Health 50:285–305.
  • Driscoll, K. E., Carter, J. M., and Lype, P. T. 1995. Establishment of immortalized alveolar type II cell lines from adult rat lungs. In Vitro Cell Dev. Biol. 31:516–527.
  • Driscoll, K. E., Deyo, L. C., Carter, J. M., Howard, B. W., Hassenbein, D. G., and Betram, T. A. 1997. Effects of particle exposure and particle-elicited inflammatory cells on mutation in rat alveolar epithelial cells. Carcinogen esis 18:423–430.
  • Dye, J. A., Adler, K. B., Richards, J. H., and Dreher, K. L. 1997. Epithelial injury induced by exposure to residual oil fly-ash particles. Role of reactive oxygen species. Am.]. Respir. Cell MoL Biol. 17: 625–633.
  • Fubini, B. 1998. Surface chemistry and quartz hazard. Ann. Occup. Hyg. 42:521–530.
  • Fubini, B., Giamello, E., Pugliese, L., and Volante, M. 1989. Mechanically induced defects in quartz and their impact on pathogenicity. Solid State Ionics 32/33:334–343.
  • Fubini, B., Bolis, V., Giamello, E., and Volante, M. 1991. Chemical functionalities at the broken fibre surface relatable to free radicals production. In Mechanisms in fibre carcinogenesis, eds. R. C. Brown, J. A. Hoskins, and N. F. Johnson, pp. 415–432. New York: Plenum Press.
  • Ghio, A. J., Kennedy, T. P., Whorton, R., Crumbliss, A. L., Hatch, G. E., and Hoidal, J. R. 1992. Role of surface complexed iron in oxidant generation and lung inflammation induced by silicates. Am.]. PhysioL 263:L511–518.
  • Giamello, E., Fubini, B., Volante, M., and Costa, D. 1990. Surface oxygen radicals originating via redox reactions during the mechanical activation of crystalline Si°, in hydrogen peroxide. Colloids Surfaces 45:155–165.
  • Huang, X., Fournier, J., Koenig, K., and Chen, L. C. 1998. Buffering capacity of coal and its acid-soluble Fe2+ content: Possible role in coal workers' pneumoconiosis. Chem. Res. ToxicoL 7:722–729.
  • IARC. 1997. Silica, some silicates, coal dust and para-aramid fibrils. IARC Monogr. Eval. Carcinogen. Risks Hum. 68.
  • Janssen, Y. M. W., Borm, P. J. A., van Houten, B., and Mossman, B. T. 1993. Cell and tissue responses to oxidative damage. Lab. Invest. 69: 261–274.
  • Kennedy, T., Ghio, A. J., Reed, W., Samet, J., Zagorski, J., Quay, J., Carter, J., Dailey, L., Hoidal, J. R., and Devlin, R. B 1998. Copper-dependent inflammation and nuclear factor-KB activation by particulate air pollution. Am.]. Respir. Cell. MoL Biol. 19:366–378.
  • Knaapen, A., Seiler, F., Schilderman, P. A. E. L., Nehls, P., Bruch, J., Schins, P. P. F., and Borm, P. J. A. 1999. Neutrophils cause oxidative DNA damage in alveolar epithelial cells. Free Radical Biol. Med. 27:234–240.
  • Kodavanti, U. P., Meng, Z. H., Hauser, R., Christiani, D., Ledbetter, A., McGee, J., Richards, J., and Costa, D. L. 1998. In vivo and in vitro correlates of particle-induced lung injury: Specific roles of bioavailable metals. In Relationships between respiratory disease and exposure to air pollu-tion, ed. U. Mohr, pp. 261–266. Washington, DC: ILSI Press.
  • Lund, L. G., and Aust, A. E. 1990. Iron mobilization from asbestos by chelators and ascorbic acid. Arch. Biochem. Biophys. 278:60–64.
  • Medical Research Council. 1999. IEH Report on Approaches to Predicting Toxicity from Occupa-tional Exposure to Dusts. Report R11. Norwich, UK: Page Bros.
  • Monn, C., and Becker, S. 1999. Cytotoxicity and induction of pro-inflammatory cytokines from human monocytes exposed to fine (PM2.5) and coarse particles (PM10-2.5) in outdoor and indoor air. Toxicol. Appl. Pharmacol. 155:245–252.
  • Mosman, T. 1983. Rapid colorimetric assay for cellular growth and survival: Application to prolifera-tion and cytotoxicity assays.]. Immunol. Methods 65:516–527.
  • Nehls, P., Seiler, F., Rehn, B., Greferath, R., and Bruch, J. 1997. Formation and persistence of 8-oxoguanine in rat lung cells is an important determinant for tumor formation following particle exposure. Environ. Health Perspect. 105(supp I. 5):1291–1296.
  • Pritchard, R. J., Ghio, A. J., Lehmann, J. R., Winsett, D. W., Tepper, J. S., Park, P., Gilmour, M. I., Dreher, K. L., and Costa, D. L. 1996. Oxidant generation and lung injury after particulate air pollutant exposure increase with the concentrations of associated metals. Inhal. Toxicol. 8:457–477.
  • Schins, R. P. F., and Borm, P. J. A. 1999. Mechanisms and mediators in coal dust induced toxicity:A review. Ann. Occup. Hyg. 43:7–33.
  • Schins, R. P. F., Schilderman, P. A. E. L., and Borm, P. J. A. 1995. Oxidative DNA damage in periph-eral blood lymphocytes of coal workers. Int. Arch. Occup. Environ. Health 67:153–157.
  • Shi, X., Dalai, N. S., and Vallyathan, V. 1988. ESR evidence for the hydroxyl radical formation in aqueous suspension of quartz particles and its possible significance to lipid peroxidation in sili-cosis. J. Toxicol. Environ. Health 25:237–245.
  • Shi, X., Mao, Y., Daniel, L. N., Saffiotti, U., Dalai, N. S., and Vallyathan, V. 1994. Silica radical-induced DNA damage and lipid peroxidation. Environ. Health Perspect. 102\(suppl. 10):149–154.
  • Smith, K. R., and Aust, A. E. 1997. Mobilization of iron from urban air particulates leads to genera-tion of reactive oxygen species in vitro and induction of ferritin synthesis in human lung epithe-lial cells. Chem. Res. Toxicol. 10:828–834.
  • Smith, K. R., Veranth, J. M., Lightly, J. S., and Aust, A. E 1998. Mobilization of iron from coal fly-ashes was dependent upon particle size and the source of coal. Chem. Res. Toxicol. 11:1494–1500.
  • Vallyathan, V., Shi, X., Dalai, N. S., Irr, W., and Castranova, V. 1988. Generation of free radicals from freshly fractured silica dust: Potential role in acute silica-induced lung injury. Am. Rev. Respir. Dis. 138:1213–1219.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.