153
Views
5
CrossRef citations to date
0
Altmetric
Original

Regulation of DNA synthesis in mouse embryonic stem cells by transforming growth factor-α: Involvement of the PI3-K/Akt and Notch/Wnt signaling pathways

, &
Pages 104-116 | Received 20 Oct 2007, Accepted 17 Mar 2008, Published online: 11 Jul 2009

References

  • Jonakait GM, Luskin MB, Ni L. Transforming growth factor-α expands progenitor cells of the basal forebrain, but does not promote cholinergic differentiation. J Neurobiol 1998; 37(3)405–412
  • Kawamura K, Fukuda J, Shimizu Y, Kodama H, Tanaka T. Survivin contributes to the anti-apoptotic activities of transforming growth factor α in mouse blastocysts through phosphatidylinositol 3′-kinase pathway. Biol Reprod 2005; 73(6)1094–1101
  • Wang D, Patil S, Li W, Humphrey LE, Brattain MG, Howell GM. Activation of the TGF α autocrine loop is downstream of IGF-I receptor activation during mitogenesis in growth factor dependent human colon carcinoma cells. Oncogene 2002; 21: 2785–2796
  • Chia CM, Winston RM, Handyside AH. EGF, TGF α and EGFR expression in human preimplantation embryos. Development 1995; 121: 299–307
  • Dardik A, Smith RM, Schultz RM. Colocalization of transforming growth factor-α and a functional epidermal growth factor receptor (EGFR) to the inner cell mass and preferential localization of the EGFR on the basolateral surface of the trophectoderm in the mouse blastocyst. Dev Biol 1992; 154: 396–409
  • Brison DR, Schultz RM. Apoptosis during mouse blastocyst formation: Evidence for a role for survival factors including transforming growth factor α. Biol Reprod 1997; 56: 1088–1096
  • Brison DR, Schultz RM. Increased incidence of apoptosis in transforming growth factor α-deficient mouse blastocysts. Biol Reprod 1998; 59: 136–144
  • Pei Y, Ma J, Zhang X, Ji W. Serum-free culture of rhesus monkey embryonic stem cells. Arch Androl 2003; 49(5)331–342
  • Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992; 255(5052)1707–1710
  • Vescovi AL, Reynoldsm BA, Fraser DD, Weiss S. bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 1993; 11(5)951–966
  • Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, Burgess AW. Epidermal growth factor receptor: Mechanisms of activation and signalling. Exp Cell Res 2003; 284: 31–53
  • Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nature reviews. Mol Cell Biol 2001; 2: 127–137
  • Kolch W. Meaningful relationships: The regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 2000; 351(Pt 2)289–305
  • Darmoul D, Gratio V, Devaud H, Peiretti F, Laburthe M. Activation of proteinase-activated receptor 1 promotes human colon cancer cell proliferation through epidermal growth factor receptor transactivation. Mol Cancer Res 2004; 2(9)514–522
  • Kimura M, Ogihara M. Effects of branched-chain amino acids on DNA synthesis and proliferation in primary cultures of adult rat hepatocytes. Eur J Pharmacol 2005; 510(3)167–180
  • Walsh J, Andrews PW. Expression of Wnt and Notch pathway genes in a pluripotent human embryonal carcinoma cell line and embryonic stem cell. APMIS 2003; 111(1)197–210
  • Smith AG. Embryo-derived stem cells: Of mice and men. Annu Rev Cell Dev Biol 2001; 17: 435–462
  • Weissman IL, Anderson DJ, Gage F. Stem and progenitor cells: Origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 2001; 17: 387–403
  • Carson DD, Bagchi I, Dey SK, Enders AC, Fazleabas AT, Lessey BA, Yoshinaga K. Embryo implantation. Dev Biol 2000; 223: 217–237
  • Stewart CL, Cullinan EB. Preimplantation development of the mammalian embryo and its regulation by growth factors. Dev Genet 1997; 21: 91–101
  • Heo JS, Lee YJ, Han HJ. EGF stimulates proliferation of mouse embryonic stem cells: Involvement of Ca2+ influx and p44/42 MAPKs. Am J Physiol Cell Physiol 2006; 290(1)C123–C133
  • Heo JS, Han HJ. PKC and MAPKs pathways mediate EGF-induced stimulation of 2-deoxyglucose uptake in mouse embryonic stem cells. Cell Physiol Biochem 2006; 17(3–4)145–158
  • Chen CH, Ho ML, Chang JK, Hung SH, Wang GJ. Green tea catechin enhances osteogenesis in a bone marrow mesenchymal stem cell line. Osteoporos Int 2005; 16(12)2039–2045
  • Zhang E, Li X, Zhang S, Chen L, Zheng X. Cell cycle synchronization of embryonic stem cells: Effect of serum deprivation on the differentiation of embryonic bodies in vitro. Biochem Biophys Res Commun 2005; 333(4)1171–1177
  • Hsieh HL, Wu CY, Hwang TL, Yen MH, Parker P, Yang CM. BK-induced cytosolic phospholipase A2 expression via sequential PKC-δ, p42/p44 MAPK, and NF-kB activation in rat brain astrocytes. J Cell Physiol 2006; 206(1)246–254
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248–254
  • Sharif A, Prévot V, Renault-Mihara F, Allet C, Studler JM, Canton B, Chneiweiss H, Junier MP. Transforming growth factor α acts as a gliatrophin for mouse and human astrocytes. Oncogene 2006; 25(29)4076–4085
  • Jirmanova L, Afanassieff M, Gobert-Gosse S, Markossian S, Savatier P. Differential contributions of ERK and PI3-kinase to the regulation of cyclin D1 expression and to the control of the G1/S transition in mouse embryonic stem cells. Oncogene 2002; 21(36)5515–5528
  • Murakami M, Ichisaka T, Maeda M, Oshiro N, Hara K, Edenhofer F, Kiyama H, Yonezawa K, Yamanaka S. mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol 2004; 24(15)6710–6718
  • Takahashi K, Murakami M, Yamanaka S. Role of the phosphoinositide 3-kinase pathway in mouse embryonic stem (ES) cells. Biochem Soc Trans 2005; 33(Pt 6)1522–1525
  • Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci USA 1998; 95(4)1432–1437
  • Burdon T, Stracey C, Chambers I, Nichols J, Smith A. Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells. Dev Biol 1999; 210(1)30–43
  • Zou GM, Chen JJ, Ni J. LIGHT induces differentiation of mouse embryonic stem cells associated with activation of ERK5. Oncogene 2006; 25(3)463–469
  • Armstrong L, Hughes O, Yung S, Hyslop L, Stewart R, Wappler I, Peters H, Walter T, Stojkovic P, Evans J, Stojkovic M, Lako M. The role of PI3K/AKT, MAPK/ERK and NFκB signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis. Hum Mol Genet 2006; 15(11)1894–1913
  • Kang HB, Kim JS, Kwon HJ, Nam KH, Youn HS, Sok DE, Lee Y. Basic fibroblast growth factor activates ERK and induces c-fos in human embryonic stem cell line MizhES1. Stem Cells Dev 2005; 14(4)395–401
  • Wandzioch E, Edling CE, Palmer RH, Carlsson L, Hallberg B. Activation of the MAP kinase pathway by c-Kit is PI-3 kinase dependent in hematopoietic progenitor/stem cell lines. Blood 2004; 104: 51–57
  • Hu Q, Klippel A, Muslin AJ, Fantl WJ, Williams LT. Ras-dependent induction of cellular responses by constitutively active phosphatidylinositol-3 kinase. Science 1995; 268: 100–102
  • Heo JS, Han HJ. ATP stimulates mouse embryonic stem cell proliferation via protein kinase C, phosphatidylinositol 3-kinase/Akt, and mitogen-activated protein kinase signaling pathways. Stem Cells 2006; 24(12)2637–2648
  • Kim YH, Heo JS, Han HJ. High glucose increase cell cycle regulatory proteins level of mouse embryonic stem cells via PI3-K/Akt and MAPKs signal pathways. J Cell Physiol 2006; 209(1)94–102
  • Byun HJ, Hong IK, Kim E, Jin YJ, Jeoung DI, Hahn JH, Kim YM, Park SH, Lee H. A splice variant of CD99 increases motility and MMP-9 expression of human breast cancer cells through the AKT-ERK-, and JNK-dependent AP-1 activation signaling pathways. J Biol Chem 2006; 281(46)34833–34847
  • Subramaniam S, Shahani N, Strelau J, Laliberté C, Brandt R, Kaplan D, Unsicker K. Insulin-like growth factor 1 inhibits extracellular signal-regulated kinase to promote neuronal survival via the phosphatidylinositol 3-kinase/protein kinase A/c-Raf pathway. J Neurosci 2005; 25(11)2838–2852
  • Rho JY, Yu K, Han JS, Chae JI, Koo DB, Yoon HS, Moon SY, Lee KK, Han YM. Transcriptional profiling of the developmentally important signalling pathways in human embryonic stem cells. Hum Reprod 2006; 21(2)405–412
  • Noggle SA, Weiler D, Condie BG. Notch signaling is inactive but inducible in human embryonic stem cells. Stem Cells 2006; 24(7)1646–1653
  • Takao Y, Yokota T, Koide H. β-catenin up-regulates Nanog expression through interaction with Oct-3/4 in embryonic stem cells. Biochem Biophys Res Commun 2007; 353(3)699–705
  • Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: Cell fate control and signal integration in development. Science 1999; 284(5415)770–776
  • Schroeter EH, Kisslinger JA, Kopan R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 1998; 393(6683)382–386
  • Shearman MS, Beher D, Clarke EE, Lewis HD, Harrison T, Hunt P, Nadin A, Smith AL, Stevenson G, Castro JL. L-685,458, an aspartyl protease transition state mimic, is a potent inhibitor of amyloid β-protein precursor gamma-secretase activity. Biochemistry 2000; 39(30)8698–8704
  • Fox V, Gokhale PJ, Walsh JR, Matin M, Jones M, Andrews PW. Cell–cell signaling through NOTCH regulates human embryonic stem cell proliferation. Stem Cells 2008; 26(3)715–723
  • Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J, Ruas JL, Poellinger L, Lendahl U, Bondesson M. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 2005; 9(5)617–628
  • Martys-Zage JL, Kim SH, Berechid B, Bingham SJ, Chu S, Sklar J, Nye J, Sisodia SS. Requirement for presenilin 1 in facilitating lagged 2-mediated endoproteolysis and signaling of notch 1. J Mol Neurosci 2000; 15(3)189–204
  • Mumm JS, Kopan R. Notch signaling: From the outside in. Dev Biol 2000; 228: 151–165
  • Liu ZJ, Xiao M, Balint K, Smalley KS, Brafford P, Qiu R, Pinnix CC, Li X, Herlyn M. Notch1 signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression. Cancer Res 2006; 66(8)4182–4190
  • Stockhausen MT, Sjolund J, Axelson H. Regulation of the Notch target gene Hes-1 by TGFα induced Ras/MAPK signaling in human neuroblastoma cells. Exp Cell Res 2005; 310(1)218–228
  • He XC, Zhang J, Tong WG, Tawfik O, Ross J, Scoville DH, Tian Q, Zeng X, He X, Wiedemann LM, Mishina Y, Li L. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-β-catenin signaling. Nat Genet 2004; 36(10)1117–1121
  • Dihlmann S, Kloor M, Fallsehr C, von Knebel Doeberitz M. Regulation of AKT1 expression by β-catenin/Tcf/Lef signaling in colorectal cancer cells. Carcinogenesis 2005; 26(9)1503–1512
  • Feng Z, Srivastava AS, Mishra R, Carrier E. A regulatory role of Wnt signaling pathway in the hematopoietic differentiation of murine embryonic stem cells. Biochem Biophys Res Commun 2004; 324(4)1333–1339
  • Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 2004; 10(1)55–63
  • Wang H, Charles PC, Wu Y, Ren R, Pi X, Moser M, Barshishat-Kupper M, Rubin JS, Perou C, Bautch V, Patterson C. Gene expression profile signatures indicate a role for Wnt signaling in endothelial commitment from embryonic stem cells. Circ Res 2006; 98(10)1331–1339
  • Paling NR, Wheadon H, Bone HK, Welham MJ. Regulation of embryonic stem cell self-renewal by phosphoinositide 3-kinase-dependent signaling. J Biol Chem 2004; 279(46)48063–48070
  • Gandarillas A, Watt FM. c-Myc promotes differentiation of epidermal stem cells. Genes Dev 1997; 11: 2869–2882
  • Eilers M, Schirm S, Bishop JM. The MYC protein activates transcription of the alpha-prothymosin gene. EMBO J 1991; 10(1)133–141
  • Liu ZJ, Xiao M, Balint K, Smalley KS, Brafford P, Qiu R, Pinnix CC, Li X, Herlyn M. Notch1 signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression. Cancer Res 2006; 66(8)4182–4190
  • Fitzgerald K, Harrington A, Leder P. Ras pathway signals are required for notch-mediated oncogenesis. Oncogene 2000; 19(37)4191–4198
  • McCormick F. Signalling networks that cause cancer. Trends Cell Biol 1999; 9(12)M53–M56
  • Mirza AM, Gysin S, Malek N, Nakayama K, Roberts JM, McMahon M. Cooperative regulation of the cell division cycle by the protein kinases Raf and Akt. Mol Cell Biol 2004; 24(24)10868–10881
  • Hallmann D, Trümper K, Trusheim H, Ueki K, Kahn CR, Cantley LC, Fruman DA, Hörsch D. Altered signaling and cell cycle regulation in embryonal stem cells with a disruption of the gene for phosphoinositide 3-kinase regulatory subunit p85α. J Biol Chem 2003; 278(7)5099–5108
  • Faast R, White J, Cartwright P, Crocker L, Sarcevic B, Dalton S. Cdk6-cyclin D3 activity in murine ES cells is resistant to inhibition by p16INK4a. Oncogene 2004; 23(2)491–502

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.