91
Views
13
CrossRef citations to date
0
Altmetric
Original

p38 MAPK signaling mediates IL-17-induced nitric oxide synthase expression in bone marrow cells

, , , , , , , , , , , , , , , , , , , & show all
Pages 79-90 | Received 10 Oct 2008, Accepted 11 Jan 2009, Published online: 11 Jul 2009

References

  • Aicher A, Heeschen C, Mildner-Rihm C, Urbich C, Ihling C, Technau-Ihling K, Zeiher AM, Dimmeler S. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 2003; 9: 1370–1376
  • Angulo I, Rodriguez R, Garcia B, Medina M, Navarro J, Subiza JL. Involvement of nitric oxide in bone marrow-derived natural suppressor activity. Its dependence on IFN-gamma. J Immunol 1995; 155: 15–26
  • Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells: Characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 2004; 8: 301–316
  • Barthlen W, Klemens C, Rogenhofer S, Stadler J, Unbehaun N, Holzmann B. Critical role of nitric oxide for proliferation and apoptosis of bone-marrow cells under septic conditions. Ann Hematol 2000; 79: 249–254
  • Beleslin-Čokić BB, Čokić VP, Yu X, Weksler BB, Schechter AN, Noguchi CT. Erythropoiethin and hypoxia stimulate erythropoietin receptor and nitric oxide production by endothelial cells. Blood 2004; 104: 2073–2080
  • Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: Nature, biology and potential application. Stem Cells 2001; 19: 180–192
  • Bugarski D, Krstić A, Vlaški M, Petakov M, Jovčić G, Stojanović N, Milenković P. Interleukine-17-induced inhibitory effect on late stage murine erythroid bone marrow progenitors. Eur Cytokine Netw 2004; 15: 247–254
  • Bugarski D, Krstić A, Mojsilović S, Vlaški M, Petakov M, Jovčić G, Stojanović N, Milenković P. Signaling pathways implicated in haematopoietic progenitor cell proliferation and differentiation. Exp Biol Med 2007; 232: 156–163
  • Cirino G, Fiorucci S, Sessa WC. Endothelial nitric oxide synthase: The Cinderella of inflammation?. Trends Pharmacol Sci 2003; 24: 91–95
  • Connelly L, Palacios-Callender M, Ameixa C, Moncada S, Hobbs AJ. Biphasic regulation of NF-kappa B activity underlies the pro- and anti-inflammatory actions of nitric oxide. J Immunol 2001; 166: 3873–3881
  • Connelly L, Jacobs AT, Palacios-Callender M, Moncada S, Hobbs AJ. Macrophage endothelial nitric-oxide synthase autoregulates cellular activation and pro-inflammatory protein expression. J Biol Chem 2003; 278: 26480–26487
  • Damoulis PD, Drakos DE, Gagari E, Kaplan DL. Osteogenic differentiation of human mesenchymal bone marrow cells in silk scaffolds is regulated by nitric oxide. Ann NY Acad Sci 2007; 1117: 367–376
  • Forlow SB, Schurr JR, Kolls JK, Bagby GJ, Schwarzenberger PO, Ley K. Increased granulopoiesis through interleukin-17 and granulocyte-colony-stimulating factor in leukocyte adhesion molecule-deficient mice. Blood 2001; 98: 3309–3314
  • Forstermann U, Boissel JP, Kleinert H. Expressional control of the ‘constitutive’ isoforms of nitric oxide synthase (NOS I and NOS III). FASEB J 1998; 12: 773–790
  • Fossiez F, Banchereau J, Murray R, Van Kooten C, Garrone P, Lebecque S. Interleukin-17. Intern Rev Immunol 1998; 16: 541–551
  • Guillot PV, Cui W, Fisk NM, Polak DJ. Stem cell differentiation and expansion for clinical applications of tissue engineering. J Cell Mol Med 2007; 11: 935–944
  • Helfrich MH, Evans DE, Grabowski PS, Pollock JS, Ohshima H, Ralston SH. Expression of nitric oxide synthase isoforms in bone and bone cell cultures. J Bone Miner Res 1997; 12: 1108–1115
  • Huang W, La Russa V, Alzoubi A, Schwarzenberger P. Interleukin-17A: A T-cell-derived growth factor for murine and human mesenchymal stem cells. Stem Cells 2006; 24: 1512–1518
  • Iwakura A, Shastry S, Luedemann C, Hamada H, Kawamoto A, Kishore R, Zhu Y, Qin G, Silver M, Thorne T, Eaton L, Masuda H, Asahara T, Losordo DW. Estradiol enhances recovery after myocardial infarction by augmenting incorporation of bone marrow-derived endothelial progenitor cells into sites of ischemia-induced neovascularization via endothelial nitric oxide synthase-mediated activation of matrix metalloproteinase-9. Circulation 2006; 113: 1605–1614
  • Jacobs-Helber SM, Sawyer ST. Jun N-terminal kinase promotes proliferation of immature erythroid cells and erythropoietin-dependent cell lines. Blood 2004; 104: 696–703
  • Jovčić G, Bugarski D, Petakov M, Stanković J, Stojanović N, Milenković P. Effect of IL-17 on in vitro haematopoietic progenitor cells growth and cytokine release in normal and post-irradiated murine bone marrow. Growth Factors 2001; 19: 61–71
  • Jovčić G, Bugarski D, Petakov M, Krstić A, Vlaški M, Stojanović N, Milenković P. In vivo effects of interleukin-17 on haematopoietic cells and cytokine release in normal mice. Cell Prolif 2004; 37: 401–412
  • Kawaguchi M, Adachi M, Oda N, Kokubu F, Huang SK. IL-17 cytokine family. J Allergy Clin Immunol 2004; 114: 1265–1273
  • Kim YM, Bombeck CA, Billiar TR. Nitric oxide as a bifunctional regulator of apoptosis. Circ Res 1999; 84: 253–256
  • Kolonics A, Apati A, Janossy J, Brozik A, Gati R, Schaefer A, Magocsi M. Activation of the Raf/ERK1/2 MAP kinase pathway is involved in GM-CSF-induced proliferation and survival but not in erythropoietin-induced differentiation of TF-1 cells. Cell Signal 2001; 13: 743–754
  • Krasnov P, Michurina T, Packer MA, Stasiv Y, Nakaya N, Moore KA, Drazan KE, Enikolopov G. Neuronal nitric oxide synthase contributes to the regulation of haematopoiesis. Mol Med 2008; 14: 141–149
  • Landmesser U, Engberding N, Bahlmann FH, Schaefer A, Wiencke A, Heineke A, Spiekermann S, Hilfiker-Kleiner D, Templin C, Kotlarz D, Mueller M, Fuchs M, Hornig B, Haller H, Drexler H. Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase. Circulation 2004; 110: 1933–1939
  • Li H, Wallerath T, Forstermann U. Physiological mechanisms regulating the expression of endothelial-type NO synthase. Nitric Oxide 2002a; 7: 132–147
  • Li H, Wallerath T, Munzel T, Forstermann U. Regulation of endothelial-type NO synthase expression in pathophysiology and in response to drugs. Nitric Oxide 2002b; 7: 149–164
  • Liu Z, Jiang Y, Hao H, Gupta K, Xu J, Chu L, McFalls EO, Zweier JL, Verfaillie CM, Bache RJ. Endothelial nitric oxide synthase is dynamically expressed during bone marrow stem cell differentiation into endothelial cells. Am J Physiol Heart Circ Physiol 2007; 293: H1760–H1765
  • Maciejewski JP, Selleri C, Sato T, Cho HJ, Keefer LK, Nathan CF, Young NS. Nitric oxide suppression of human haematopoiesis in vitro. Contribution to inhibitory action of interferon-gamma and tumor necrosis factor-alpha. J Clin Invest 1995; 96: 1085–1092
  • Martel-Pelletier J, Mineau F, Jovanović D, Di Battista JA, Pelletier JP. Mitogen-activated protein kinase and nuclear factor kappaB together regulate interleukin-17-induced nitric oxide production in human osteoarthritic chondrocytes: Possible role of transactivating factor mitogen-activated protein kinase-activated protein kinase (MAPKAPK). Arthritis Rheum 1999; 42: 2399–2409
  • Michel T, Feron O. Nitric oxide synthases: Which, where, how and why?. J Clin Invest 1997; 100: 2146–2152
  • Michurina T, Krasnov P, Balazs A, Nakaya N, Visilieva T, Kuzin B, Khrushchov N, Mulligan RC, Enikolopov G. Nitric oxide is a regulator of haematopoietic stem cell activity. Mol Ther 2004; 10: 241–248
  • Miljković D, Trajković V. Inducible nitric oxide synthase activation by interleukin-17. Cytokine Growth Factor Rev 2004; 15: 21–32
  • Miljković D, Cvetković I, Vučković O, Stošić-Grujičić S, Mostarica-Stojković M, Trajković V. The role of interleukin-17 in inducible nitric oxide synthase-mediated nitric oxide production in endothelial cells. Cell Mol Life Sci 2003; 60: 518–525
  • Miljković D, Cvetković I, Momčilović M, Maksimović-Ivanić D, Stošić-Grujičić S, Trajković V. Interleukin-17 stimulates inducible nitric oxide synthase-dependent toxicity in mouse beta cells. Cell Mol Life Sci 2005; 62: 2658–2668
  • Nagata Y, Takahashi N, Davis RJ, Todokoro K. Activation of p38 MAP kinase and JNK but not ERK is required for erythropoietin-induced erythroid differentiation. Blood 1998; 92: 1859–1869
  • Ozuyaman B, Ebner P, Niesler U, Ziemann J, Kleinbongard P, Jax T, Godecke A, Kelm M, Kalka C. Nitric oxide differentially regulates proliferation and mobilization of endothelial progenitor cells but not of haematopoietic stem cells. Thromb Haemost 2005; 94: 770–772
  • Platanias LC. Map kinase signaling pathways and hematological malignancies. Blood 2003; 101: 4667–4679
  • Punjabi CJ, Laskin DL, Heck DE, Laskin JD. Production of nitric oxide by murine bone marrow cells. Inverse correlation with cellular proliferation. J Immunol 1992; 149: 2179–2184
  • Sasaki K, Heeschen C, Aicher A, Ziebart T, Honold J, Urbich C, Rossig L, Koehl U, Koyanagi M, Mohamed A, Brandes RP, Martin H, Zeiher AM, Dimmeler S. Ex vivo pretreatment of bone marrow mononuclear cells with endothelial NO synthase enhancer AVE9488 enhances their functional activity for cell therapy. Proc Natl Acad Sci USA 2006; 103: 14537–14541
  • Schwarzenberger P, La Russa V, Miller A, Ye P, Huang W, Zieske A, Nelson S, Bagby GJ, Stoltz D, Mynatt RL, Spriggs M, Kolls JK. IL-17 stimulates granulopoiesis in mice: Use of an alternate, novel gene therapy-derived method for in vivo evaluation of cytokines. J Immunol 1998; 161: 6383–6389
  • Schwarzenberger P, Huang W, Oliver P, Byrne P, La Russa V, Zhang Z, Kolls JK. IL-17 mobilizes peripheral blood stem cells with short- and long-term repopulating ability in mice. J Immunol 2001; 167: 2081–2086
  • Shalom-Barak T, Quach J, Lotz M. Interleukin-17-induced gene expression in articular chondrocytes is associated with activation of mitogen-activated protein kinases and NF-kappaB. J Biol Chem 1998; 273: 27467–27473
  • Shami PJ, Weinberg JB. Differential effects of nitric oxide on erythroid and myeloid colony growth from CD34+ human bone marrow cells. Blood 1996; 87: 977–982
  • Silvestre JS, Tamarat R, Ebrahimian TG, Le-Roux A, Clergue M, Emmanuel F, Duriez M, Schwartz B, Branellec D, Levy BI. Vascular endothelial growth factor-B promotes in vivo angiogenesis. Circ Res 2003; 93: 114–123
  • Stockinger B, Veldhoen M. Differentiation and function of Th17 T cells. Curr Opin Immunol 2007; 19: 281–286
  • Tsukahara H, Hori C, Hiraoka M, Mayumi M, Okada T, Gejyo F. Nitric oxide modulation of erythropoiesis in rats. Blood 1997; 90: 473–474
  • Urao N, Okigaki M, Yamada H, Aadachi Y, Matsuno K, Matsui A, Matsunaga S, Tateishi K, Nomura T, Takahashi T, Tatsumi T, Matsubara H. Erythropoietin-mobilized endothelial progenitors enhance reendothelialization via Akt-endothelial nitric oxide synthase activation and prevent neointimal hyperplasia. Circ Res 2006; 98: 1405–1413
  • Van Bezooijen RL, Papapoulos SE, Lowik CW. Effect of interleukin-17 on nitric oxide production and osteoclastic bone resorption: Is there dependency on nuclear factor-kappaB and receptor activator of nuclear factor kappaB (RANK)/RANK ligand signaling?. Bone 2001; 28: 378–386
  • Verma A, Deb DK, Sassano A, Kambhampati S, Wickrema A, Uddin S, Mohindru M, Van Besien K, Platanias LC. Cutting edge: Activation of the p38 mitogen-activated protein kinase signaling pathway mediates cytokine-induced hemopoietic suppression in aplastic anemia. J Immunol 2002a; 168: 5984–5988
  • Verma A, Deb DK, Sassano A, Uddin S, Varga J, Wickrema A, Platanias LC. Activation of the p38 mitogen-activated protein kinase mediates the suppressive effects of type I interferons and transforming growth factor-β on normal haematopoiesis. J Biol Chem 2002b; 277: 7726–7735
  • Villalobo A. Nitric oxide and cell proliferation. FEBS J 2006; 273: 2329–2344
  • Wuyts WA, Vanaudenaerde BM, Dupont LJ, Van Raemdonck DE, Demedts MG, Verleden GM. Interleukin-17-induced interleukin-8 release in human airway smooth muscle cells: Role for mitogen-activated kinases and nuclear factor-κB. J Heart Lung Transplant 2005; 24: 875–881

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.