537
Views
71
CrossRef citations to date
0
Altmetric
Research Article

A Review on Applications of Liposomes in Textile Processing

&
Pages 249-262 | Published online: 16 Dec 2008

References

  • J. Adams, and Q. H. Ann. (1993). Structure determination of sphingolipids by mass spectrometry. Mass Spectrom Rev 12:51–85.
  • A. Almog, S. Litman, and et al (1990). States of aggregation and phase transformations in mixture of phosphatidylcholine and actyl glucoside. Biochemistry 15 29 (19):4582–92.
  • R. Almog, and R. A. Saulsbery. (1993). The solubility of a dye-detergent complex in phospholipid vesicles. J Colloid Interface Sci 159:328–34.
  • J. M. Anderson, and S. W. Kim. (1988). Advances in Drug Delivery Systems. Vol 3, Elsevier: Amsterdam.
  • A. Aradissis, S. Hatziantoniou, and et al (2005). Lipid analysis of Greek broad bean oil: Preparation of liposomes and physicochemical characterization. Eur J Lipid Sci Technol 107:799–804.
  • V. D. Awasthi, D. Garcia, and et al (2004). Neutral and anionic liposome-encapsulated hemoglobin: Effect of postinserted poly (ethylene glycol)-distearoylphosphatidylethanolamine on distribution and circulation kinetics. J Pharmacol Exp Ther 309:241–8.
  • J. B. Bassett, R. U. Anderson, and et al (1986). Use of temperature-sensitive liposomes in the selective delivery of methotrexate and cis-platinum analogues to murine bladder tumor. J Urol 135:612–5.
  • S.C. Basu, and M. Basu. (2002). Liposome Methods and Protocols (Methods in Molecular Biology). V 199. Humana Press: Totowa, New Jersey, 4–17.
  • H. Baumann, L. Setiawan, and et al (1986). Surface studies of keratin fibres and related model compounds using ESCA, 2 - intermediate oxidation products of cystyl residues on keratin fibre surfaces and their hydrolytical stability. Surf Interface Anal 8 (5):219–25.
  • S. D. Bruck. (Ed.). (1983). Controlled Drug Delivery. Vols. 1 and 2. CRC Press, Inc: Boca Raton, FL.
  • F. J. Carrion Fité. (1995). Dyeing polyester at low temperatures: Kinetics of dyeing with disperse dyes. Text Res J 65:362–8.
  • T. Castor. (1995). Method and apparatus for extracting taxol from source materials. U.S. Patent No. 5,440,055, August 2008.
  • T. Castor. (1998). Methods and apparatus for making liposomes containing hydrophobic drugs. U.S. Patent No. 5,776,486, July 2007.
  • T. Castor. (2005). Phospholipid Nanosomes. Curr. Drug Delivery V2 (4):1–12.
  • D. Chapman. (1986). Physicochemical properties of phospholipids and lipid-water system. In G. Gregoriadis. (Ed.) Liposome Technology, Vol, 1. CRC Press Inc.: Boca Raton, FL, 1–9.
  • A. Chaudhuri. (2002). Cationic liposomes–promising gene carriers in non-viral gene therapy. Business Briefing: Pharmatech 1–4.
  • C. S. Chong, and K. Colbow. (1976). Light scattering and turbidity measurements on lipid vesicles. Biochim Biophys Acta. 436 (2):260–82.
  • L. Chunlei, and D. Yingjie. (2004). A novel method for the preparation of liposomes: Freeze drying of monophase solutions. J Pharm Sci 93 (6):1403–14.
  • L. Chunlei, D. YingJie, et al. (2007). Preparation of liposomes and oily formulations by freeze-drying of monophase solutions. Ch. 3.. In G. Gregoriadis. (Ed.), Liposome Technology, Informa Healthcare USA, Inc.: New York.
  • P. Clapes, and M. R. Infante. (2002). Amino acid-based surfactants: Enzymatic synthesis, properties and potential applications. Biocata. Biotransform 20 (4):215–533.
  • M. Cocera, O. Lo´pez, and et al (2004). Effect of the electrostatic charge on the mechanism inducing liposome solubilization: A kinetic study by synchrotron radiation SAXS. Langmuir 20:3074–9.
  • L. Coderch, A. de la Maza, and et al (1996). Physicochemical characteristics of liposomes formed with internal wool lipids. JAOCS 73:1713–8.
  • L. Coderch. M. Martíet al. (1999). Industrial use of liposomes in wool dyeing. IWTO Florence Meeting. Rep. No. CTF 4.
  • D. J. Crommelin, G. W. Bos, et al(2002). Liposomes: Successful carrier systems for targeted delivery of drugs. The Drug Delivery Companies Report Autumn, 30–6.
  • C.R. Dass. (2001). Formulation and quantity control of cationic liposomes. S Pac J Nat Sci 19:18–23.
  • A. de la Maza, L. Coderch, and et al (1997). Multilamellar liposome including cholesterol as carriers of a 1:2 metal complex dye in wool dyeing. Journal 67 (5):325–33.
  • A. de la Maza, L. Coderch, and et al (1998). Optimizing a wool process with an azoic 1:2 metal complex dye using commercially liposome. Textile Res J 68 (9):635–42.
  • A. de la Maza, and J. L. Parra. (1994). Vesicle-micelle structural transition of phosphatidylcholine bilayers and Triton X-100. Biochem J 303:907–14.
  • A. de la Maza, J. L. Parra, and et al (1993). Lipid bilayers including cholesterol as vehicles for acid dyes in wool dyeing. Textile Res J 63 (11):643–49.
  • A. de la Maza, J. L. Parra, and et al (1991a). Using liposomes in wool chlorination: Stability of chlorine liposomes and their application on wool fibers. Textile Res J 61 (6):357–62.
  • A. de la Maza, J. L. Parra, and et al (1992). Large unilamellar vesicle liposomes for wool dyeing: Stability of dye-liposome systems and their application on untreated wool. Textile Res J 62:406–13.
  • A. de la Maza, J. Sanchez Leal, and et al (1991b). Surfactants in wool chlorination. Textile Res J 61 (2):74–8.
  • N. Draper, and R. H. Smith. (1998). Applied Regression Analysis, 3 Ed. Wiley-Interscience: New York.
  • N. Duzgunes. (2005). Methods in enzymology. Liposome Part E 391
  • M. EL-Zawahry, S. EL-Shami, and et al (2007). Optimizing a wool dyeing process with reactive dye by liposome microencapsulation. Dyes and Pigments 74:684–691.
  • DA Eppstein, and PL Feigner. (1988). Liposomes as Drug Carriers: Recent Trends and Progress. Gregoriadis. (Ed.). John Wiley & Sons: New York, p 311.
  • P. L. Fegner. (1997). Nonviral strategies for gene therapy. Special report: Making gene therapy work. Scientific American 6 (98):86–70.
  • J. Fonollosa, and L. Campos. (2004). X-ray diffraction analysis of internal wool lipids. Chemistry and Physics of Lipids 130 (2):159–66.
  • J. Fonollosa, and M. Martí. (2000). TLC-FID analysis of the ceramide content of internal wool lipids. J Planar Chromatogr 13:119–22.
  • J. Gomes, and A. Baptista. (2001). Microencapsulation of acid dyes in mixed lecithin/surfactant liposomic structures. Textile Res J 71 (2):153–6.
  • J. Gomes, M. C. Genoves, and et al (1997). Controlling of reactive dyes on wool by microencapsulation with liposome. Textile Res J 67 (7):537–41.
  • M. R. Infante, A. Pinazo, and et al (1997). Non-conventional surfactants from amino acids and glycolipids: structure, preparation and properties. Colloids Surf A 123:49–70.
  • M. Kerker. (1971). Light scattering, in chemistry and physics of interfaces Π. S. Ross. (Ed.). American Chemical Society, Washington, DC, New York, p 170.
  • A. Kling. V. Hofstetter. et al (1975). Bleaching of cellulose containing textile fiber with a silicate-free stabilized peroxide bleaching bath. United States Patent, 3810391.
  • A. Korner, S. Petrovic, and et al (1995). Cell membrane lipids of wool and human hair form liposomes. Textile Res J 65 (1):56–8.
  • J. D. Leeder. (1986). The cell membrane complex and its influence on the properties of the wool fiber. Wool Sci Rev 63:3–35.
  • J. D. Leeder, D. G. Bishop, and et al (1983). Internal lipids of wool fibers. Textile Res J 53 (7):402–7.
  • D. Lewis. (1992). Wool Dyeing. Society of Dyers and Colorists: Bradford, UK, 104–6.
  • J. A. Maclaren, and B. Milligan. (1981). Wool Science: The Chemical Reactivity of the Wool Fibre. Science Press: Marrickville, Australia, 1–17.53–75.
  • M. Mady. (2007). Biophysical studies on collagen-lipid interaction. J Biosci Bioeng 104 (2):144.
  • R. L. Magin, and M. R. Niesman. (1984). Temperature-dependent drug release from large unilamellar liposomes. Cancer Drug Delivery 1:109–17.
  • M. Martí, L. Coderch, and et al (1998). Phosphatidylcholine liposomes as vehicles for disperse dyes for dyeing polyester/wool blends.Textile Res J. 68 (3):209–18.
  • M. Martí, L. Coderch, and et al (2007). Liposomes of phosphatidylcholine: A biological natural surfactant as a dispersing agent. Coloration Technology 123 (4):237–41.
  • M. Marti, A. de la Maza, and et al (2001). Dyeing wool at low temperature: New method using liposomes. Textile Res J 71 (8):678–82.
  • M. Martí, A. de la Maza, and et al (2004). New generation of liposomic products with high migration properties. Textile Res J 74 (11):961–6.
  • M. Martí, L. I Barsukov, and et al (2004). Physicochemical aspect of the liposome-wool internal in wool dyeing. Langmuir 13 20 (8):3068–73.
  • M. Masoudifar, and S. M. Mortazavi. (2007). Utilization of MLV liposomes as a carrier in dyeing of wool/polyester, The 9th Asian Textile Conference, Taichung, Taiwan, June 28–30..
  • S. Mondal. (2008). Phase change materials for smart textiles–An overview. Applied Thermal Engineering 28:1536–50.
  • M. Montazer, F. Taghavi, et al. (2007). MLV liposomes in dyeing of wool with madder. The 9th Asian Textile ConferenceTaichung, Taiwan, June 28–30.
  • M. Montazer, F. A. Taghavi, and et al (2007). Optimization of dyeing of wool with madder and liposomes by central composite design. J Appl Polym Sci 106 (3):1614–21.
  • M. Montazer, M. Validi, and et al (2006). Influence of temperature on stability of multilamellar liposomes in wool dyeing. J Liposomes Res 16:81.
  • R.K. Murray, D.K. Granner, P.A. Mayes, and V.W. Rodwell. (2003). Harpers Illustrated Biochemistry. 26th Ed. McGraw-Hill Companies, Inc.:
  • G. Nelson. (2002). Application of microencapsulation in textile. Int J Pharm 242:55–62.
  • S. D. Patil, D. G. Rhodes, and et al (2004). Anionic liposomal delivery system for DNA transfection. The AAPS Journal 6 (4):1–10.
  • B. Pause. (2006). Application of phase change and shape memory materials in medical textiles. Ed, H., L.V. Langenhove. (Eds.), Smart Textiles for Medicine and Healthcare.CRC: Boca Raton, FL, 74–88.
  • M. C. Popescu, C. E. Swenson, et al. (1987). Liposome-mediated treatment of viral, bacterial and protozal infections In J.M. Ostro. (Ed.), Liposomes From Biophysics to Therapeutic. Marcel Dekker, Inc.: New York.
  • J. R. Robinson, and H. L. Lee. (Eds.). (1987). Controlled Drug Delivery Fundamentals and Applications. 2nd Ed. Marcel Dekker: New York.
  • V. Saroglou, S. Hatzizntoniou, and et al (2006). Synthesis, liposomal formulation and thermal effects on phospholipid bilayers of leuprolide. J Pept Sci 12:43–50.
  • I. A. Sheveleva, O. A. Belokurova, and et al (2003). Polyfunctional properties of liposomes in preparation of textile materials. Fibre Chemistry 35 (1):48–52.
  • W. S. Simpson. (2002). Wool: Science and Technology. The Textile Institute. CRC Press: New York, pp, 135–41.
  • K. W. Susanne, J. Hautala, and et al (2001). Study on liposomes by capillary electrophoresis. Electrophoresis 22:1305–13.
  • F. Tharwat, and T. F. Tadros. (2005). Applied Surfactants: Principles and Applications. Wiley-VCH Weinheim Verlag GmbH & Co. KGaA, Weinheim, p 415–25.
  • M. Thomas, and T. M. Schmitt. (2001). Analysis of Surfacants. 2nd Ed. Marcel Dekker, Inc.: New York.
  • D. A. Tirrell, L. G. Donaruma, et al. (1985). Macromolecules as Drugs and as Carriers for Biologically Active Materials. New York Academy of Sciences: New York.
  • J. E. Vincent, and S. C. Goheen. (2006). Performance of bioactive molecules on cotton and other textiles. RJTA 10 (4):19–32.
  • S. K. Wiedmer, J. Hautala, and et al (2001). Study on liposomes by capillary electrophoresis. Electrophoresis 22:1305–1313.
  • S. K. Wiedmer, J. M. Holopainen, and et al (2000). Liposomes as carriers in electrokinetic capillary chromatography. Electrophoresis 21:3191–8.
  • J. Xia. (2001). Protein-based Surfactants: Synthesis, Physicochemical Properties, and Application. Surfactant Science Series 110. Marcel Dekker, Inc.: New York, pp 75–122.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.