364
Views
24
CrossRef citations to date
0
Altmetric
Review Article

Liposomal formulations in the pharmacological treatment of leishmaniasis: a review

, &
Pages 234-248 | Received 03 May 2017, Accepted 23 Aug 2017, Published online: 26 Sep 2017

References

  • Afrin, F., et al., 2002. Characterization of Leishmania donovani antigens encapsulated in liposomes that induce protective immunity in BALB/c mice. Infection and immunity, 70 (12), 6697–6706.
  • Agrawal, A.K. and Gupta, C.M., 2000. Tuftsin-bearing liposomes in treatment of macrophage-based infections. Advanced drug delivery reviews, 41 (2), 135–146.
  • Agrawal, A.K., et al., 2002. Superior chemotherapeutic efficacy of amphotericin B in tuftsin-bearing liposomes against Leishmania donovani infection in hamsters. Journal of drug targeting, 10 (1), 41–45.
  • Ahmad, I., et al., 1991. Tissue distribution and antileishmanial activity of liposomised Amphotericin-B in Balb/c mice. Journal of biosciences, 16 (4), 217–221.
  • Allen, T.M. and Cullis, P.R., 2013. Liposomal drug delivery systems: from concept to clinical applications. Advanced drug delivery reviews, 65 (1), 36–48.
  • Al-Mohammed, H.I., Chance, M.L., and Bates, P.A., 2005. Production and characterization of stable amphotericin-resistant amastigotes and promastigotes of Leishmania mexicana. Antimicrobial agents and chemotherapy, 49 (8), 3274–3280.
  • Alvar, J., Croft, S., and Olliaro, P., 2006. Chemotherapy in the treatment and control of leishmaniasis. Advances in parasitology, 61, 223–274.
  • Alving, C.R. and Steck, E.A., 1979. The use of liposome-encapsulated drugs in leishmaniasis. Trends in biochemical sciences, 4, 175–177.
  • Alving, C.R., et al., 1978a. Improved therapy of experimental leishmaniasis by use of a liposome-encapsulated antimonial drug. Life sciences, 22 (12), 1021–1026.
  • Alving, C.R., et al., 1978b. Therapy of leishmaniasis: superior efficacies of liposome-encapsulated drugs. Proceedings of the national academy of sciences of the United States of America, 75 (6), 2959–2963.
  • Alving, C.R., et al., 1980. Liposomes in leishmaniasis: therapeutic effects of antimonial drugs, 8-aminoquinolines, and tetracycline. Life sciences, 26 (26), 2231–2238.
  • Alving, C.R., et al., 1984. Liposomes in leishmaniasis: effects of parasite virulence on treatment of experimental leishmaniasis in hamsters. Annals of tropical medicine and parasitology, 78 (3), 279–286.
  • Amato, V.S., et al., 2004. Successful treatment of cutaneous leishmaniasis with lipid formulations of amphotericin B in two immunocompromised patients. Acta tropica, 92 (2), 127–132.
  • Asad, M., et al., 2015. Therapeutic and immunomodulatory activities of short-course treatment of murine visceral leishmaniasis with KALSOMETM10, a new liposomal amphotericin B. BMC infectious diseases, 15 (1), 188–199.
  • Baillie, A.J., et al., 1986. Non-ionic surfactant vesicles, niosomes, as a delivery system for the anti-leishmanial drug, sodium stibogluconate. Journal of pharmacy and pharmacology, 38 (7), 502–505.
  • Bakker-Woudenberg, I.A.J.M., 1995. Delivery of antimicrobials to infected tissue macrophages. Advanced drug delivery reviews, 17 (1), 5–20.
  • Banerjee, G., Bhaduri, A.N., and Basu, M.K., 1994. Mannose-coated liposomal hamycin in the treatment of experimental leishmaniasis in hamsters. Biochemical medicine and metabolic biology, 53 (1), 1–7.
  • Banerjee, G., et al., 1996. Drug delivery system: targeting of pentamidines to specific sites using sugar grafted liposomes. Journal of antimicrobial chemotherapy, 38 (1), 145–150.
  • Banerjee, G., Medda, S., and Basu, M.K., 1998. A novel peptide-grafted liposomal delivery system targeted to macrophages. Antimicrobial agents and chemotherapy, 42 (2), 348–351.
  • Basu, M.K. and Lala, S., 2004. Macrophage specific drug delivery in experimental leishmaniasis. Current molecular medicine, 4 (6), 681–689.
  • Bawarski, W.E., et al., 2008. Emerging nanopharmaceuticals. Nanomedicine: nanotechnology, biology, and medicine, 4 (4), 273–282.
  • Benvegnu, T., Lemiègre, L., and Cammas-Marion, S., 2009. New generation of liposomes called archaeosomes based on natural or synthetic archaeal lipids as innovative formulations for drug delivery. Recent patents on drug delivery & formulation, 3 (3), 206–220.
  • Berman, J., 2009. ABLE: a new and improved amphotericin B for visceral leishmaniasis? The American journal of tropical medicine and hygiene, 80 (5), 689–690.
  • Berman, J.D., 1988. Chemotherapy for leishmaniasis: biochemical mechanisms, clinical efficacy, and future strategies. Reviews of infectious diseases, 10 (3), 560–586.
  • Berman, J.D., et al., 1986. Antileishmanial activity of liposome-encapsulated amphotericin B in hamsters and monkeys. Antimicrobial agents and chemotherapy, 30 (6), 847–851.
  • Bodhe, P.V., et al., 1999. Dose-ranging studies on liposomal amphotericin B (L-AMP-LRC-1) in the treatment of visceral leishmaniasis. Transactions of the royal society of tropical medicine and hygiene, 93 (3), 314–318.
  • Borborema, S.E.T., et al., 2011. Uptake and antileishmanial activity of meglumine antimoniate-containing liposomes in Leishmania (Leishmania) major-infected macrophages. International journal of antimicrobial agents, 38 (4), 341–347.
  • Borborema, S.E.T., et al., 2016. Antimonial drugs entrapped into phosphatidylserine liposomes: physicochemical evaluation and antileishmanial activity. Revista da sociedade brasileira de medicina tropical, 49 (2), 196–203.
  • Bozzuto, G. and Molinari, A., 2015. Liposomes as nanomedical devices. International journal of nanomedicine, 10, 975–999.
  • Bray, P.G., et al., 2003. Pentamidine uptake and resistance in pathogenic protozoa: past, present and future. Trends in parasitology, 19 (5), 232–239.
  • Calderón Gómez, J.E., et al., 2015. Leishmaniasis cutánea verrugosa, éxito terapéutico con anfotericina B de presentación lipídica y miltefosina: reporte de un caso. Piel, 30 (2), 135–137.
  • Chakravarty, J. and Sundar, S., 2010. Drug resistance in leishmaniasis. Journal of global infectious diseases, 2 (2), 167–176.
  • Chapman, W.L., et al., 1984. Antileishmanial activity of liposome-encapsulated meglumine antimonate in the dog. American journal of veterinary research, 45 (5), 1028–1030.
  • Chattopadhyay, S. and Jafurulla, M., 2011. A novel mechanism for an old drug: amphotericin B in the treatment of visceral leishmaniasis. Biochemical and biophysical research communications, 416 (1–2), 7–12.
  • Cheesman, S., 2000. The topoisomerases of protozoan parasites. Parasitology today (personal ed.), 16 (7), 277–281.
  • Colhone, M.C., et al., 2015. Nanobiotechnologic approach to a promising vaccine prototype for immunisation against leishmaniasis: a fast and effective method to incorporate GPI-anchored proteins of Leishmania amazonensis into liposomes. Journal of microencapsulation, 32 (2), 143–150.
  • Croft, S.L. and Coombs, G.H., 2003. Leishmaniasis – current chemotherapy and recent advances in the search for novel drugs. Trends in parasitology, 19 (11), 502–508.
  • Croft, S.L. and Olliaro, P., 2011. Leishmaniasis chemotherapy – challenges and opportunities. Clinical microbiology and infection, 17 (10), 1478–1483.
  • Croft, S.L., Seifert, K., and Yardley, V., 2006. Current scenario of drug development for leishmaniasis. The Indian journal of medical research, 123 (3), 399–410.
  • Cruz, A.K., et al., 2009. Current treatment and drug discovery against Leishmania spp. and Plasmodium spp.: a review. Current drug targets, 10 (3), 178–192.
  • Das, A. and Ali, N., 2014. Combining cationic liposomal delivery with MPL-TDM for cysteine protease cocktail vaccination against Leishmania donovani: evidence for antigen synergy and protection. PLoS neglected tropical diseases, 8 (8), e3091.
  • Dasgupta, D., Chakraborty, P., and Basu, M.K., 2000. Ligation of Fc receptor of macrophages stimulates protein kinase C and anti-leishmanial activity. Molecular and cellular biochemistry, 209 (1–2), 1–8.
  • Davidson, R.N., den Boer, M., and Ritmeijer, K., 2009. Paromomycin. Transactions of the royal society of tropical medicine and hygiene, 103 (7), 653–660.
  • Davies, C.R., et al., 2003. Leishmaniasis: new approaches to disease control. BMJ (clinical research ed.), 326 (7385), 377–382.
  • Denton, H., McGregor, J.C., and Coombs, G.H., 2004. Reduction of anti-leishmanial pentavalent antimonial drugs by a parasite-specific thiol-dependent reductase, TDR1. Biochemical journal, 381 (2), 405–412.
  • Desjeux, P. and Alvar, J., 2003. Leishmania/HIV co-infections: epidemiology in Europe. Annals of tropical medicine and parasitology, 97 (Suppl 1), 3–15.
  • Dey, T., et al., 2000. Antileishmanial activities of stearylamine-bearing liposomes. Antimicrobial agents and chemotherapy, 44 (6), 1739–1742.
  • Dutta, M., Bandyopadhyay, R., and Basu, M.K., 1994. Neoglycosylated liposomes as efficient ligands for the evaluation of specific sugar receptors on macrophages in health and in experimental leishmaniasis. Parasitology, 109 (2), 139–147.
  • Ferreira, F.M., et al., 2014. Association of water extract of green propolis and liposomal meglumine antimoniate in the treatment of experimental visceral leishmaniasis. Parasitology research, 113 (2), 533–543.
  • Fong, D., et al., 1994. Paromomycin resistance in Leishmania tropica: lack of correlation with mutation in the small subunit ribosomal RNA gene. The American journal of tropical medicine and hygiene, 51 (6), 758–766.
  • Frézard, F. and Demicheli, F., 2010. New delivery strategies for the old pentavalent antimonial drugs. Expert opinion on drug delivery, 7 (12), 1343–1358.
  • Frézard, F., Demicheli, C., and Ribeiro, R.R., 2009. Pentavalent antimonials: new perspectives for old drugs. Molecules (Basel, Switzerland), 14 (7), 2317–2336.
  • Frézard, F., et al., 2000. Novel methods for the encapsulation of meglumine antimoniate into liposomes. Brazilian journal of medical and biological research, 33 (7), 841–846.
  • Gadelha, E.P.N., et al., 2015. Efficacy and safety of a single dose pentamidine (7 mg/kg) for patients with cutaneous leishmaniasis caused by L. guyanensis: a pilot study. Anais Brasileiros de dermatologia, 90 (6), 807–813.
  • Grant, G. and Bansinath, M., 2001. Liposomal delivery systems for local anesthetics. Regional anesthesia and pain medicine, 26 (1), 61–63.
  • Guru, P.Y., et al., 1989. Drug targeting in Leishmania donovani infections using tuftsin-bearing liposomes as drug vehicles. FEBS letters, 245 (1), 204–208.
  • Hammarton, T.C., Mottram, J.C., and Doerig, C., 2003. The cell cycle of parasitic protozoa: potential for chemotherapeutic exploitation. Progress in cell cycle research, 5, 91–101.
  • Handler, M.Z., et al., 2015. Cutaneous and mucocutaneous leishmaniasis. Journal of the American academy of dermatology, 73 (6), 911–926.
  • Handman, E., 2001. Leishmaniasis: current status of vaccine development. Clinical microbiology reviews, 14 (2), 229–243.
  • Higa, L.H., et al., 2016. Ultradeformable archaeosomes for needle free nanovaccination with Leishmania braziliensis antigens. PLoS One, 11 (3), e0150185.
  • Hunter, C.A., et al., 1988. Vesicular systems (niosomes and liposomes) for delivery of sodium stibogluconate in experimental murine visceral leishmaniasis. Journal of pharmacy and pharmacology, 40 (3), 161–165.
  • Jain, K. and Jain, N.K., 2013. Novel therapeutic strategies for treatment of visceral leishmaniasis. Drug discovery today, 18 (23–24), 1272–1281.
  • Jhingran, A., et al., 2009. Paromomycin: uptake and resistance in Leishmania donovani. Molecular and biochemical parasitology, 164 (2), 111–117.
  • Kalat, S.A.M., et al., 2014. Experimental parasitology use of topical liposomes containing meglumine antimoniate (Glucantime) for the treatment of L. major lesion in BALB/c mice. Experimental parasitology, 143, 5–10.
  • Kandil, E., 1973. Treatment of cutaneous leishmaniasis with trimethoprim-sulfamethoxazole combination. Dermatologica, 146 (5), 303–309.
  • Kole, L., Das, L., and Das, P.K., 1999. Synergistic effect of interferon-gamma and mannosylated liposome-incorporated doxorubicin in the therapy of experimental visceral leishmaniasis. The journal of infectious diseases, 180 (3), 811–820.
  • Kole, L., et al., 1994. Neoglycoprotein conjugated liposomes as macrophage specific drug carrier in the therapy of leishmaniasis. Biochemical and biophysical research communications, 200 (1), 351–358.
  • Lala, S., et al., 2004. Harmine: evaluation of its antileishmanial properties in various vesicular delivery systems. Journal of drug targeting, 12 (3), 165–175.
  • Lezama-Dávila, C., 1999. Vaccination of C57BL/10 mice against cutaneous Leishmaniasis. Use of purified gp63 encapsulated into niosomes surfactants vesicles: a novel approach. Memórias do instituto oswaldo cruz, 94 (1), 67–70.
  • Lima, M.I.S., et al., 2009. Genotoxic effects of the antileishmanial drug glucantime®. Archives of toxicology, 84 (3), 227–232.
  • Lucero, E., et al., 2015. Effectiveness and safety of short course liposomal amphotericin B (AmBisome) as first line treatment for visceral leishmaniasis in Bangladesh. PLoS neglected tropical diseases, 9 (4), e0003699.
  • Machado, P.R.L., et al., 2015. Treatment of disseminated leishmaniasis with liposomal amphotericin B. Clinical infectious diseases, 61 (6), 945–949.
  • Mbongo, N., et al., 1998. Mechanism of amphotericin B resistance in Leishmania donovani promastigotes. Antimicrobial agents and chemotherapy, 42 (2), 352–357.
  • McGwire, B.S., et al., 2014. Leishmaniasis: clinical syndromes and treatment. QJM: monthly journal of the association of physicians, 107 (1), 7–14.
  • Medda, S., Mukhopadhyay, S., and Basu, M.K., 1999. Evaluation of the in-vivo activity and toxicity of amarogentin, an antileishmanial agent, in both liposomal and niosomal forms. Journal of antimicrobial chemotherapy, 44 (6), 791–794.
  • Minodier, P. and Parola, P., 2007. Cutaneous leishmaniasis treatment. Travel medicine and infectious disease, 5 (3), 150–158.
  • Minodier, P., et al., 2003. Liposomal amphotericin B in the treatment of visceral leishmaniasis in immunocompetent patients. Fundamental and clinical pharmacology, 17, 183–188.
  • Momeni, A., et al., 2013. Development of liposomes loaded with anti-leishmanial drugs for the treatment of cutaneous leishmaniasis. Journal of liposome research, 23 (2), 134–144.
  • Mukherjee, M., Ball, W.B., and Das, P.K., 2014. Leishmania donovani activates SREBP2 to modulate macrophage membrane cholesterol and mitochondrial oxidants for establishment of infection. The international journal of biochemistry & cell biology, 55, 196–208.
  • Murray, H.W., et al., 2005. Advances in leishmaniasis. Lancet (London, England), 366 (9496), 1561–1577.
  • Nandi, G., et al., 1993. Synthesis, spectroscopic properties and antileishmanial activity of pentamidine analogues. Journal of the Indian chemical society, 70, 523.
  • New, R.R.C., Chance, M.L., and Heath, S., 1983. Liposome therapy for experimental cutaneous and visceral leishmaniasis. Biology of the cell, 47, 59–64.
  • No, J.H., 2016. Visceral leishmaniasis: revisiting current treatments and approaches for future discoveries. Acta tropica, 155, 113–123.
  • Nylén, S. and Gautam, S., 2010. Immunological perspectives of leishmaniasis. Journal of global infectious diseases, 2 (2), 135–146.
  • Okwor, I. and Uzonna, J., 2016. Social and economic burden of human leishmaniasis. The American journal of tropical medicine and hygiene, 94 (3), 489–493.
  • Owais, M. and Gupta, C.M., 2005. Targeted drug delivery to macrophages in parasitic infections. Current drug delivery, 2 (4), 311–318.
  • Pal, S., Ravindran, R., and Ali, N., 2004. Combination therapy using sodium antimony gluconate in stearylamine-bearing liposomes against established and chronic Leishmania donovani infection in BALB/c Mice. Antimicrobial agents and chemotherapy, 48 (9), 3591–3593.
  • Papagiannaros, A., et al., 2005. Antileishmanial and trypanocidal activities of new miltefosine liposomal formulations. Biomedicine & pharmacotherapy, 59 (10), 545–550.
  • Pardakhty, A., et al., 2012. Preparation and evaluation of niosomes containing autoclaved Leishmania major: a preliminary study. Journal of microencapsulation, 29 (3), 219–224.
  • Paris, C., et al., 2004. Miltefosine induces apoptosis-like death in Leishmania donovani promastigotes. Antimicrobial agents and chemotherapy, 48 (3), 852–859.
  • Pathak, M.K. and Yi, T., 2001. Sodium stibogluconate is a potent inhibitor of protein tyrosine phosphatases and augments cytokine responses in hemopoietic cell lines. The journal of immunology, 167 (6), 3391–3397.
  • Pérez-Victoria, F.J., et al., 2006. Mechanisms of experimental resistance of Leishmania to miltefosine: implications for clinical use. Drug resistance updates: reviews and commentaries in antimicrobial and anticancer chemotherapy, 9 (1–2), 26–39.
  • Peters, W., Evans, D.A., and Lanham, S.M., 1983. Importance of parasite identification in cases of leishmaniasis. Journal of the royal society of medicine, 76 (7), 540–542.
  • Pund, S. and Joshi, A., 2017. Chapter 23 – nanoarchitectures for neglected tropical protozoal diseases: challenges and state of the art. In: A.M. Grumezescu, ed. Nano- and microscale drug delivery systems. Amsterdam: Elsevier, 439–480.
  • Qi, P., et al., 2016. The biological activity of cationic liposomes in drug delivery and toxicity test in animal models. Environmental toxicology and pharmacology, 47, 159–164.
  • Raay, B., et al., 1999. Targeting of piperine intercalated in mannose-coated liposomes in experimental leishmaniasis. Indian journal of biochemistry & biophysics, 36 (4), 248–251.
  • Ram, V.J. and Nath, M., 1996. Progress in chemotherapy. Current medicinal chemistry, 3, 303–316.
  • Renslo, A.R. and McKerrow, J.H., 2006. Drug discovery and development for neglected parasitic diseases. Nature chemical biology, 2 (12), 701–710.
  • Ribeiro, R.R., et al., 2008. Reduced tissue parasitic load and infectivity to sand flies in dogs naturally infected by Leishmania (Leishmania) chagasi following treatment with a liposome formulation of meglumine antimoniate. Antimicrobial agents and chemotherapy, 52 (7), 2564–2572.
  • Rittig, M. and Bogdan, C., 2000. Leishmania-host-cell interaction: complexities and alternative views. Parasitology today (personal ed.), 16 (7), 292–297.
  • Roberts, C.W., et al., 2003. Fatty acid and sterol metabolism: potential antimicrobial targets in apicomplexan and trypanosomatid parasitic protozoa. Molecular and biochemical parasitology, 126 (2), 129–142.
  • Romero, G.A.S. and Boelaert, M., 2010. Control of visceral leishmaniasis in Latin America—a systematic review. PLoS neglected tropical diseases, 4 (1), e584.
  • Rongen, H.A., Bult, A., and van Bennekom, W., 1997. Liposomes and immunoassays. Journal of immunological methods, 204 (2), 105–133.
  • Rotureau, B., 2006. Are New World leishmaniases becoming anthroponoses? Medical hypotheses, 67 (5), 1235–1241.
  • Russell, D.G. and Alexander, J., 1988. Effective immunization against cutaneous leishmaniasis with defined membrane antigens reconstituted into liposomes. Journal of immunology, 140 (4), 1274–1279.
  • Saha, A.K., Mukherjee, T., and Bhaduri, A., 1986. Mechanism of action of amphotericin B on Leishmania donovani promastigotes. Molecular and biochemical parasitology, 19 (3), 195–200.
  • Samad, A., Sultana, Y., and Aqil, M., 2007. Liposomal drug delivery systems: an update review. Current drug delivery, 4 (4), 297–305.
  • Sands, M., Kron, M.A., and Brown, R.B., 1985. Pentamidine: a review. Reviews of infectious diseases, 7 (5), 625–634.
  • Schettini, D.A., et al., 2003. Distribution of liposome-encapsulated antimony in dogs. Brazilian journal of medical and biological research, 36 (2), 269–272.
  • Schettini, D.A., et al., 2005. Pharmacokinetic and parasitological evaluation of the bone marrow of dogs with visceral leishmaniasis submitted to multiple dose treatment with liposome-encapsulated meglumine antimoniate. Brazilian journal of medical and biological research, 38 (12), 1879–1883.
  • Schettini, D.A., et al., 2006. Improved targeting of antimony to the bone marrow of dogs using liposomes of reduced size. International journal of pharmaceutics, 315 (1–2), 140–147.
  • Shahian, M. and Alborzi, A., 2009. Effect of meglumine antimoniate on the pancreas during treatment of visceral leishmaniasis in children. International medical journal of experimental and clinical research, 15 (6), CR290–CR293.
  • Shimizu, Y., et al., 2003. Protection against Leishmania major infection by oligomannose-coated liposomes. Bioorganic & medicinal chemistry, 11 (7), 1191–1195.
  • Sindermann, H., et al., 2004. Miltefosine (Impavido): the first oral treatment against leishmaniasis. Medical microbiology and immunology, 193 (4), 173–180.
  • Singh, N., Kumar, M., and Singh, R.K., 2012. Leishmaniasis: current status of available drugs and new potential drug targets. Asian pacific journal of tropical medicine, 5 (6), 485–497.
  • Sinha, R., et al., 2015. Cationic liposomal sodium stibogluconate (SSG), a potent therapeutic tool for treatment of infection by SSG-sensitive and -resistant Leishmania donovani. Antimicrobial agents and chemotherapy, 59 (1), 344–355.
  • Srivastava, S., et al., 2016. Possibilities and challenges for developing a successful vaccine for leishmaniasis. Parasites & vectors, 9 (1), 277.
  • Stone, N.R.H., et al., 2016. Liposomal Amphotercin B (Ambisome®): a review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs, 76 (4), 485–500.
  • Sundar, S. and Chakravarty, J., 2010. Liposomal amphotericin B and leishmaniasis: dose and response. Journal of global infectious diseases, 2 (2), 159–166.
  • Sundar, S. and Olliaro, P.L., 2007. Miltefosine in the treatment of leishmaniasis: clinical evidence for informed clinical risk management. Therapeutics and clinical risk management, 3 (5), 733–740.
  • Sundar, S., et al., 2011. Ambisome plus miltefosine for Indian patients with kala-azar. Transactions of the royal society of tropical medicine and hygiene, 105 (2), 115–117.
  • Sundar, S., et al., 2015. Single-dose indigenous liposomal amphotericin B in the treatment of Indian visceral leishmaniasis: a phase 2 study. The American journal of tropical medicine and hygiene, 92 (3), 513–517.
  • Tempone, A.G. and Andrade, H.F.d.A., 2008. Nanoformulações de antimônio pentavalente encapsuladas em lipossomos contendo fosfatidilserina demonstram maior eficácia contra Leishmaniose Visceral experimental. Revista do instituto Adolfo Lutz, 67, 131–136.
  • Tempone, A.G., et al., 2004. Targeting Leishmania (L.) chagasi amastigotes through macrophage scavenger receptors: the use of drugs entrapped in liposomes containing phosphatidylserine. The journal of antimicrobial chemotherapy, 54 (1), 60–68.
  • Thakur, A., Kaur, H., and Kaur, S., 2015. Evaluation of the immunoprophylactic potential of a killed vaccine candidate in combination with different adjuvants against murine visceral leishmaniasis. Parasitology international, 64 (1), 70–78.
  • Toledo-Machado, C.M., et al., 2015. Use of phage display technology in development of canine visceral leishmaniasis vaccine using synthetic peptide trapped in sphingomyelin/cholesterol liposomes. Parasites & vectors, 8, 133.
  • Torchilin, V., 2012. Liposomes in drug delivery. In: Fundamentals and applications of controlled release drug delivery. Boston (MA): Springer US, 289–328.
  • Trouiller, P., et al., 2002. Drug development for neglected diseases: a deficient market and a public-health policy failure. Lancet, 359 (9324), 2188–2194.
  • Unger, C., et al., 1989. Hexadecylphosphocholine, a new ether lipid analogue. Studies on the antineoplastic activity in vitro and in vivo. Acta oncologica, 28 (2), 213–217.
  • Valladares, J.E., et al., 1997. Pharmacokinetics of liposome-encapsulated meglumine antimonate after intramuscular and subcutaneous administration in dogs. The American journal of tropical medicine and hygiene, 57 (4), 403–406.
  • Valladares, J.E., et al., 2001. Long term improvement in the treatment of canine leishmaniosis using an antimony liposomal formulation. Veterinary parasitology, 97 (1), 15–21.
  • van Griensven, J. and Boelaert, M., 2011. Combination therapy for visceral leishmaniasis. Lancet (London, England), 377 (9764), 443–444.
  • Wadhone, P., et al., 2009. Miltefosine promotes IFN-gamma-dominated anti-leishmanial immune response. Journal of immunology (Baltimore, MD: 1950), 182 (11), 7146–7154.
  • Weldon, J.S., et al., 1983. Liposomal chemotherapy in visceral leishmaniasis: an ultrastructural study of an intracellular pathway. Zeitschrift für parasitenkunde parasitology research, 69 (4), 415–424.
  • Wyllie, S., Cunningham, M.L., and Fairlamb, A.H., 2004. Dual action of antimonial drugs on thiol redox metabolism in the human pathogen Leishmania donovani. Journal of biological chemistry, 279 (38), 39925–39932.
  • Yardley, V. and Croft, S.L., 2000. A comparison of the activities of three amphotericin B lipid formulations against experimental visceral and cutaneous leishmaniasis. International journal of antimicrobial agents, 13 (4), 243–248.
  • Zaghloul, I.Y. and Al-Jasser, M., 2004. Effect of renal impairment on the pharmacokinetics of antimony in hamsters. Annals of tropical medicine and parasitology, 98 (8), 793–800.
  • Zielinska, J., et al., 2016. Thermodynamics and kinetics of amphotericin B self-association in aqueous solution characterized in molecular detail. Scientific reports, 6, 19109.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.