123
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Development of a brain-targeted nano drug delivery system to enhance the treatment of neurodegenerative effects of resveratrol

, , , , , , , , , & show all
Pages 435-451 | Received 23 Sep 2023, Accepted 27 Nov 2023, Published online: 07 Dec 2023

References

  • Wyss-Coray T. Ageing, neurodegeneration and brain rejuvenation. Nature. 2016;539(7628):180–186. doi: 10.1038/nature20411.
  • Meng H, Hale L, Friedberg F. Prevalence and predictors of fatigue in middle-aged and older adults: evidence from the health and retirement study. J Am Geriatr Soc. 2010;58(10):2033–2034. doi: 10.1111/j.1532-5415.2010.03088.x.
  • Li Z, Cheng J, Huang L, et al. Aging diagnostic probe for research on aging and evaluation of anti-aging drug efficacy. Anal Chem. 2021;93(41):13800–13806. doi: 10.1021/acs.analchem.1c02391.
  • Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443(7113):787–795. doi: 10.1038/nature05292.
  • Gulen MF, Samson N, Keller A, et al. cGAS–STING drives ageing-related inflammation and neurodegeneration. Nature. 2023;620(7973):374–380. doi: 10.1038/s41586-023-06373-1.
  • Furman D, Campisi J, Verdin E, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25(12):1822–1832. doi: 10.1038/s41591-019-0675-0.
  • Pluvinage JV, Haney MS, Smith BaH, Sun J, et al. CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. Nature. 2019;568(7751):187–192. doi: 10.1038/s41586-019-1088-4.
  • Liu X-L, Zhao Y-C, Zhu H-Y, et al. Taxifolin retards the d-galactose-induced aging process through inhibiting Nrf2-mediated oxidative stress and regulating the gut microbiota in mice. Food Funct. 2021;12(23):12142–12158. doi: 10.1039/d1fo01349a.
  • Lu S, Zhou J, Yang C, et al. γ-Glutamylcysteine ameliorates d-gal-induced senescence in PC12 cells and mice via activating AMPK and SIRT1. Food Funct. 2022;13(14):7560–7571. doi: 10.1039/d2fo01246d.
  • Bai K, Hong B, Hong Z, et al. Selenium nanoparticles-loaded chitosan/citrate complex and its protection against oxidative stress in d-galactose-induced aging mice. J Nanobiotechnology. 2017;15(1):92. doi: 10.1186/s12951-017-0324-z.
  • Zhang J-J, Chen K-C, Zhou Y, et al. Evaluating the effects of mitochondrial autophagy flux on ginsenoside Rg2 for delaying D-galactose induced brain aging in mice. Phytomedicine. 2022;104:154341. doi: 10.1016/j.phymed.2022.154341.
  • Quideau S, Deffieux D, Pouységu L. Resveratrol still has something to say about aging!. Angew Chem Int Ed Engl. 2012;51(28):6824–6826. doi: 10.1002/anie.201203059.
  • Ruan S, Zhou Y, Jiang X, et al. Rethinking CRITID procedure of brain targeting drug delivery: Circulation, blood brain barrier recognition, intracellular transport, diseased cell targeting, internalization, and drug release. Adv Sci. 2021;8(9):2004025. doi: 10.1002/advs.202004025.
  • Gao H. Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm Sin B. 2016;6(4):268–286. doi: 10.1016/j.apsb.2016.05.013.
  • Guo R-B, Zhang X-Y, Yan D-K, et al. Folate-modified triptolide liposomes target activated macrophages for safe rheumatoid arthritis therapy. Biomater Sci. 2022;10(2):499–513. doi: 10.1039/d1bm01520f.
  • Yang AJT, Bagit A, Macpherson REK. Resveratrol, metabolic dysregulation, and alzheimer’s disease: considerations for neurogenerative disease. Int J Mol Sci. 2021;22(9):4628. doi: 10.3390/ijms22094628.
  • Bastianetto S, Ménard C, Quirion R. Neuroprotective action of resveratrol. Biochim Biophys Acta. 2015;1852(6):1195–1201. doi: 10.1016/j.bbadis.2014.09.011.
  • Griñán-Ferré C, Bellver-Sanchis A, Izquierdo V, et al. The pleiotropic neuroprotective effects of resveratrol in cognitive decline and alzheimer’s disease pathology: from antioxidant to epigenetic therapy. Ageing Res Rev. 2021;67:101271. doi: 10.1016/j.arr.2021.101271.
  • Khaledian S, Dayani M, Fatahian A, et al. Efficiency of lipid-based nano drug delivery systems in crossing the blood–brain barrier: a review. J Mol Liq. 2022;346:118278. doi: 10.1016/j.molliq.2021.118278.
  • Huang M, Liang C, Tan C, et al. Liposome co-encapsulation as a strategy for the delivery of curcumin and resveratrol. Food Funct. 2019;10(10):6447–6458. doi: 10.1039/c9fo01338e.
  • Sun J, Wei C, Liu Y, et al. Progressive release of mesoporous nano-selenium delivery system for the multi-channel synergistic treatment of alzheimer’s disease. Biomaterials. 2019;197:417–431. doi: 10.1016/j.biomaterials.2018.12.027.
  • Wang T, He W, Du Y, et al. Redox-sensitive irinotecan liposomes with active ultra-high loading and enhanced intracellular drug release. Colloids Surf B Biointerfaces. 2021;206:111967. doi: 10.1016/j.colsurfb.2021.111967.
  • Teixeira S, Carvalho MA, Castanheira EMS. Functionalized liposome and albumin-based systems as carriers for poorly water-soluble anticancer drugs: an updated review. Biomedicines. 2022;10(2):486. doi: 10.3390/biomedicines10020486.
  • Duncanson WJ, Figa MA, Hallock K, et al. Targeted binding of PLA microparticles with lipid-PEG-tethered ligands. Biomaterials. 2007;28(33):4991–4999. doi: 10.1016/j.biomaterials.2007.05.044.
  • Liu Z, Jiang M, Kang T, et al. Lactoferrin-modified PEG-co-PCL nanoparticles for enhanced brain delivery of NAP peptide following intranasal administration. Biomaterials. 2013;34(15):3870–3881. doi: 10.1016/j.biomaterials.2013.02.003.
  • Habib S, Singh M. Angiopep-2-modified nanoparticles for brain-directed delivery of therapeutics: a review. Polymers (Basel). 2022;14(4):712. doi: 10.3390/polym14040712.
  • Li X-T, He M-L, Zhou Z-Y, et al. The antitumor activity of PNA modified vinblastine cationic liposomes on lewis lung tumor cells: in vitro and in vivo evaluation. Int J Pharm. 2015;487(1-2):223–233. doi: 10.1016/j.ijpharm.2015.04.035.
  • Song XL, Ju RJ, Xiao Y, et al. Application of multifunctional targeting epirubicin liposomes in the treatment of non-small-cell lung cancer. Int J Nanomedicine. 2017;12:7433–7451. doi: 10.2147/IJN.S141787.
  • Gastaldi L, Battaglia L, Peira E, et al. Solid lipid nanoparticles as vehicles of drugs to the brain: current state of the art. Eur J Pharm Biopharm. 2014;87(3):433–444. doi: 10.1016/j.ejpb.2014.05.004.
  • Singh A, Ahmad I, Ahmad S, et al. A novel monolithic controlled delivery system of resveratrol for enhanced hepatoprotection: nanoformulation development, pharmacokinetics and pharmacodynamics. Drug Dev Ind Pharm. 2016;42(9):1524–1536. doi: 10.3109/03639045.2016.1151032.
  • Zawilska P, Machowska M, Wisniewski K, et al. Novel pegylated liposomal formulation of docetaxel with 3-n-pentadecylphenol derivative for cancer therapy. Eur J Pharm Sci. 2021;163:105838. doi: 10.1016/j.ejps.2021.105838.
  • Silvander M, Hansson P, Edwards K. Liposomal surface potential and bilayer packing as affected by PEG − lipid inclusion. Langmuir. 2000;16(8):3696–3702. doi: 10.1021/la9912646.
  • Rahnfeld L, Thamm J, Steiniger F, et al. Study on the in situ aggregation of liposomes with negatively charged phospholipids for use as injectable depot formulation. Colloids Surf B Biointerfaces. 2018;168:10–17. doi: 10.1016/j.colsurfb.2018.02.023.
  • Xiao W, Wang Y, Zhang H, et al. The protein corona hampers the transcytosis of transferrin-modified nanoparticles through blood–brain barrier and attenuates their targeting ability to brain tumor. Biomaterials. 2021;274:120888. doi: 10.1016/j.biomaterials.2021.120888.
  • Mahmud M, Piwoni A, Filipczak N, et al. Long-circulating curcumin-loaded liposome formulations with high incorporation efficiency, stability and anticancer activity towards pancreatic adenocarcinoma cell lines in vitro. PLOS One. 2016;11(12):e0167787. doi: 10.1371/journal.pone.0167787.
  • Yu Y, He S-y, Kong L, et al. Brain-targeted multifunctional micelles delivering oridonin and phillyrin for synergistic therapy of alzheimer's disease. J. Drug Delivery Sci. Technol. 2023;87:104794 10.1016/j.jddst.2023.104794
  • Xiao W, Xiong J, Zhang S, et al. Influence of ligands property and particle size of gold nanoparticles on the protein adsorption and corresponding targeting ability. Int J Pharm. 2018;538(1–2):105–111. doi: 10.1016/j.ijpharm.2018.01.011.
  • Morales-Zavala F, Arriagada H, Hassan N, et al. Peptide multifunctionalized gold nanorods decrease toxicity of β-amyloid peptide in a Caenorhabditis elegans model of alzheimer’s disease. Nanomedicine. 2017;13(7):2341–2350. doi: 10.1016/j.nano.2017.06.013.
  • Han G, Bai K, Yang X, et al. Drug-Carrier” synergy therapy for amyloid-β clearance and inhibition of tau phosphorylation via biomimetic lipid nanocomposite assembly. Adv Sci. 2022;9(14):2106072. doi: 10.1002/advs.202106072.
  • Wang Y-J, Tang L, Lu X-H, et al. Efficacy of epi-1 modified epirubicin and curcumin encapsulated liposomes targeting-EpCAM in the inhibition of epithelial ovarian cancer cells. J Liposome Res. 2022;33(2):197–213. doi: 10.1080/08982104.2022.2153138.
  • Kumari S, Dhapola R, Reddy DH. Apoptosis in alzheimer’s disease: insight into the signaling pathways and therapeutic avenues. Apoptosis. 2023;28(7-8):943–957. doi: 10.1007/s10495-023-01848-y.
  • Tonnies E, Trushina E. Oxidative stress, synaptic dysfunction, and alzheimer’s disease. J Alzheimers Dis. 2017;57(4):1105–1121. doi: 10.3233/JAD-161088.
  • Atiya A, Muhsinah AB, Alrouji M, et al. Unveiling promising inhibitors of superoxide dismutase 1 (SOD1) for therapeutic interventions. Int J Biol Macromol. 2023;253(Pt 2):126684. doi: 10.1016/j.ijbiomac.2023.126684. 126684.
  • Samanta S, Chakraborty S, Bagchi D. Pathogenesis of neurodegenerative diseases and the protective role of natural bioactive components. J Am Nutr Assoc. 2023;42:1–13. doi: 10.1080/27697061.2023.2203235.
  • Kent SA, Miron VE. Microglia regulation of Central nervous system myelin health and regeneration. Nat Rev Immunol. 2023; doi: 10.1038/s41577-023-00907-4.
  • Mcnamara NB, Munro DD, Bestard-Cuche N, et al. Microglia regulate central nervous system myelin growth and integrity. Nature. 2023;613(7942):120–129. doi: 10.1038/s41586-022-05534-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.