139
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Slack-variable models versus component-proportion models for mixture experiments: Literature review, evaluations, and recommendations

ORCID Icon, &

References

  • Aitchison, J., and J. Bacon-Shone. 1984. Log contrast models for experiments with mixtures. Biometrika 71 (2):323–30. doi:10.1093/biomet/71.2.323.
  • Atkinson, A. C., A. N. Donev, and R. D. Tobias. 2007. Optimum experimental designs, with SAS. New York: Oxford University Press.
  • Becker, N. G. 1968. Models for the response of a mixture. Journal of the Royal Statistical Society: Series B (Methodological) 30 (2):349–58. doi:10.1111/j.2517-6161.1968.tb00735.x.
  • Chan, K. Y., and P. E. Kavanagh. 1992. Application of Plackett-Burman design and linear programming to light-duty liquid detergent formulation. Journal of the American Oil Chemists Society 69 (7):690–4. doi:10.1007/BF02635811.
  • Cornell, J. A. 2000. Fitting a slack-variable model to mixture data: Some questions raised. Journal of Quality Technology 32 (2):133–47. doi:10.1080/00224065.2000.11979985.
  • Cornell, J. A. 2002. Experiments with mixtures: Designs, models and the analysis of mixture data. 3rd ed. New York: John Wiley and Sons.
  • Cornell, J. A., and J. W. Gorman. 2003. Two new mixture models: Living with collinearity but removing its influence. Journal of Quality Technology 35 (1):78–88. doi:10.1080/00224065.2003.11980193.
  • Cox, D. R. 1971. A note on polynomial response functions for mixtures. Biometrika 58 (1):155–9. doi:10.1093/biomet/58.1.155.
  • Cruz-Salgado, J. 2015. Selecting the slack variable in mixture experiment. Ingeniería Investigación y Tecnología XVI (4):613–23.
  • Cruz-Salgado, J. 2016. Comparing the intercept mixture model with the slack variable mixture model. Ingeniería Investigación y Tecnología XVII (3):383–93. doi:10.1016/j.riit.2016.07.008.
  • Draper, N. R., and R. C. St. John. 1977. A mixtures model with inverse terms. Technometrics 19 (1):37–46. doi:10.2307/1268252.
  • Gorman, J. W. 1970. Fitting equations to mixture data with restraints on compositions. Journal of Quality Technology 2 (4):186–94. doi:10.1080/00224065.1970.11980437.
  • Kang, L., J. Cruz-Salgado, and W. A. Brenneman. 2016. Comparing the slack-variable mixture model with other alternatives. Technometrics 58 (2):255–68. doi:10.1080/00401706.2014.985389.
  • Khuri, A. I. 2005. Slack-variable models versus Scheffé’s mixture models. Journal of Applied Statistics 32 (9):887–908. doi:10.1080/02664760500163466.
  • Kurotori, I. S. 1966. Experiments with mixtures of components having lower bounds. Industrial Quality Control 22(11) 592–6.
  • Landmesser, S. M., and G. F. Piepel. 2007. Comparison of slack variable and mixture experiment approaches. Proceedings of the 2007 Joint Statistical Meetings, 1711–7. Alexandria, VA: American Statistical Association
  • Marquardt, D. W., and R. D. Snee. 1974. Test statistics for mixture models. Technometrics 16 (4):533–7. doi:10.1080/00401706.1974.10489234.
  • McLean, R. A., and V. L. Anderson. 1966. Extreme vertices design of mixture experiments. Technometrics 8 (3):447–56. doi:10.1080/00401706.1966.10490377.
  • Myers, R. H., D. C. Montgomery, and C. M. Anderson-Cook. 2009. Response surface methodology: Process optimization using designed experiments. 3rd ed. New York: John Wiley and Sons.
  • Piepel, G. F. 1982. Measuring component effects in constrained mixture experiments. Technometrics 24 (1):29–39. doi:10.1080/00401706.1982.10487706.
  • Piepel, G. F., and S. K. Cooley. 2009. Automated method for reducing Scheffé linear mixture experiment models. Quality Technology and Quantitative Management 6 (3):255–70. doi:10.1080/16843703.2009.11673198.
  • Piepel, G. F., and J. A. Cornell. 1994. Mixture experiment approaches: Examples, discussion, and recommendations. Journal of Quality Technology 26 (3):177–96. doi:10.1080/00224065.1994.11979525.
  • Piepel, G. F., and S. M. Landmesser. 2009. Mixture experiment alternatives to the slack variable approach. Quality Engineering 21 (3):262–76. doi:10.1080/08982110902862095.
  • Piepel, G. F., J. M. Szychowski, and J. L. Loeppky. 2002. Augmenting Scheffé linear mixture models with squared and/or crossproduct terms. Journal of Quality Technology 34 (3):297–314. doi:10.1080/00224065.2002.11980160.
  • Prescott, P., A. M. Dean, N. R. Draper, and S. M. Lewis. 2002. Mixture experiments: Ill-conditioning and quadratic model specification. Technometrics 44 (3):260–8. doi:10.1198/004017002188618446.
  • Redgate, P. E., G. F. Piepel, and P. Hrma. 1992. Second-order model selection in mixture experiments. 1992 Proceedings of the Section on Physical and Engineering Sciences, 104–10. Alexandria, VA: American Statistical Association.
  • SAS. 1989. SAS/STAT user’s guide, Version 6. 4th ed., Vol. 2. Cary, NC: SAS Institute.
  • Smith, W. F. 2005. Experimental design for formulation. ASA-SIAM series on statistics and applied probability. Philadelphia, PA: SIAM; Alexandria, VA: ASA.
  • Snee, R. D. 1973. Techniques for the analysis of mixture data. Technometrics 15 (3):517–28. doi:10.1080/00401706.1973.10489078.
  • Snee, R. D. 1975. Experimental designs for quadratic models in constrained mixture spaces. Technometrics 17 (2):149–59. doi:10.2307/1268345.
  • Snee, R. D., and G. F. Piepel. 2013. Assessing component effects in formulation systems. Quality Engineering 25 (1):46–53. doi:10.1080/08982112.2012.731628.
  • Snee, R. D., and A. A. Rayner. 1982. Assessing the accuracy of mixture model regression calculations. Journal of Quality Technology 14 (2):67–79. doi:10.1080/00224065.1982.11978792.
  • Soo, H. M., E. H. Sander, and D. W. Kess. 1978. Definition of a prediction model for determination of the effect of processing and compositional parameters on the textural characteristics of fabricated shrimp. Journal of Food Science 43 (4):1165–71. doi:10.1111/j.1365-2621.1978.tb15261.x.
  • St. John, R. C. 1984. Experiments with mixtures, ill-conditioning, and ridge regression. Journal of Quality Technology 16 (2):81–96. doi:10.1080/00224065.1984.11978895.
  • Volf, M. B. 1988. Mathematical approach to glass. Amsterdam: Elsevier Science Publishers. ISBN 0‐444‐98951‐X.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.