234
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Toward a concept of digital twin for monitoring assembly and disassembly processes

, , & ORCID Icon

References

  • Alkan, B. 2019. An experimental investigation on the relationship between perceived assembly complexity and product design complexity. International Journal on Interactive Design and Manufacturing (IJIDeM) 13 (3):1145–57. doi: 10.1007/s12008-019-00556-9.
  • Alkan, B., and R. Harrison. 2019. A virtual engineering based approach to verify structural complexity of component-based automation systems in early design phase. Journal of Manufacturing Systems 53:18–31. doi: 10.1016/j.jmsy.2019.09.001.
  • Alkan, B., D. A. Vera, M. Ahmad, B. Ahmad, and R. Harrison. 2018. Complexity in manufacturing systems and its measures: A literature review. European J. of Industrial Engineering 12 (1):116–50. doi: 10.1504/EJIE.2018.089883.
  • Alkan, B., D. Vera, B. Ahmad, and R. Harrison. 2017. A method to assess assembly complexity of industrial products in early design phase. IEEE Access 6:989–99. doi: 10.1109/ACCESS.2017.2777406.
  • Barbato, G., E. M. Barini, G. Genta, and R. Levi. 2011. Features and performance of some outlier detection methods. Journal of Applied Statistics 38 (10):2133–49. doi: 10.1080/02664763.2010.545119.
  • Bates, Douglas M., and Donald G. Watts, eds. 1988. Nonlinear regression analysis and its applications. Hoboken, NJ: John Wiley & Sons. doi: 10.1002/9780470316757.
  • Bisgaard, S. 1997. Designing experiments for tolerancing assembled products. Technometrics 39 (2):142–52. doi: 10.1080/00401706.1997.10485079.
  • Cameron, A. C., and P. K. Trivedi. 2013. Regression Analysis of Count Data. Bloomington: Cambridge University Press.
  • Detzner, A., and M. Eigner. 2018. A digital twin for root cause analysis and product quality monitoring. In DS 92: Proceedings of the DESIGN 2018 15th International Design Conference, ed. D. Marjanović, M. Štorga, S. Škec, N. Bojčetić, and N. Pavković, 1547–58. Croatia: Design Society. doi: 10.21278/idc.2018.0418.
  • ElMaraghy, W., H. ElMaraghy, T. Tomiyama, and L. Monostori. 2012. Complexity in engineering design and manufacturing. CIRP Annals 61 (2):793–814. doi: 10.1016/j.cirp.2012.05.001.
  • Franceschini, F., M. Galetto, G. Genta, and D. A. Maisano. 2018. Selection of quality-inspection procedures for short-run productions. The International Journal of Advanced Manufacturing Technology 99 (9–12):2537–47. doi: 10.1007/s00170-018-2648-8.
  • Galetto, M., E. Verna, and G. Genta. 2020. Accurate estimation of prediction models for operator-induced defects in assembly manufacturing processes. Quality Engineering 32 (4):595–613. doi: 10.1080/08982112.2019.1700274.
  • Galetto, M., E. Verna, and G. Genta. 2021. Effect of process parameters on parts quality and process efficiency of fused deposition modeling. Computers & Industrial Engineering 156 (June):107238. doi: 10.1016/j.cie.2021.107238.
  • Genta, G., M. Galetto, and F. Franceschini. 2018. Product complexity and design of inspection strategies for assembly manufacturing processes. International Journal of Production Research 56 (11):4056–66. doi: 10.1080/00207543.2018.1430907.
  • Grieves, M. 2014. Digital twin: Manufacturing excellence through virtual factory replication. White Paper 1:1–7. https://theengineer.markallengroup.com/Production/Content/Uploads/2014/12/Digital_Twin_White_Paper_Dr_Grieves.Pdf
  • Grieves, M., and J. Vickers. 2017. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary perspectives on complex systems, eds. J. Kahlen, S. Flumerfelt, and A. Alves, 85–113. Springer, Cham. doi: 10.1007/978-3-319-38756-7_4.
  • Gulivindala, A. K., M. V. Raju Bahubalendruni, S. S. Prasad Varupala, and K. Sankaranarayanasamy. 2020. A heuristic method with a novel stability concept to perform parallel assembly sequence planning by subassembly detection. Assembly Automation 40 (5):779–87. doi: 10.1108/AA-01-2020-0017/FULL/PDF.
  • Guo, J., and Z. Lv. 2022. Application of digital twins in multiple fields. Multimedia Tools and Applications 81 (19):26941–67. doi: 10.1007/s11042-022-12536-5.
  • He, Z., H. Hu, M. Zhang, and X. Yin. 2022. Product quality prediction based on process data: Taking the gearbox of Company D as an example. Quality Engineering 34 (3):409–22. doi: 10.1080/08982112.2022.2063743.
  • Jones, D., C. Snider, A. Nassehi, J. Yon, and B. Hicks. 2020. Characterising the digital twin: A systematic literature review. CIRP Journal of Manufacturing Science and Technology 29 (May):36–52. doi: 10.1016/j.cirpj.2020.02.002.
  • Kaewunruen, S., P. Rungskunroch, and J. Welsh. 2018. A digital-twin evaluation of net zero energy building for existing buildings. Sustainability 11 (1):159. doi: 10.3390/su11010159.
  • Kenett, R. S., and J. Bortman. 2022. The digital twin in Industry 4.0: A wide‐angle perspective. Quality and Reliability Engineering International 38 (3):1357–66. doi: 10.1002/qre.2948.
  • Ketelaere, B., De Smeets, B., P. Verboven, B. Nicolaï, and W. Saeys. 2022. Digital twins in quality engineering. Quality Engineering 34 (3):404–8. doi: 10.1080/08982112.2022.2052731.
  • Li, X., Y. Shi, and I. Gutman. 2012. Graph energy. New York: Springer Science & Business Media.
  • Liu, M., S. Fang, H. Dong, and C. Xu. 2021. Review of digital twin about concepts, technologies, and industrial applications. Journal of Manufacturing Systems 58 (January):346–61. doi: 10.1016/j.jmsy.2020.06.017.
  • Ma, Y., H. Zhou, H. He, G. Jiao, and S. Wei. 2019. A digital twin-based approach for quality control and optimization of complex product assembly. Paper presented at 2019 IEEE International Conference on Artificial Intelligence and Advanced Manufacturing (AIAM), Dublin, Ireland, October 16–18, 762–67. doi: 10.1109/AIAM48774.2019.00157.
  • Modoni, G. E., B. Stampone, and G. Trotta. 2022. Application of the digital twin for in process monitoring of the micro injection moulding process quality. Computers in Industry 135 (February):103568. doi: 10.1016/j.compind.2021.103568.
  • Montgomery, D. C., G. C. Runger, and N. F. Hubele. 2010. Engineering statistics. New York: John Wiley & Sons.
  • Raju Bahubalendruni, M. V., B. B. Biswal, M. Kumar, and R. Nayak. 2015. Influence of assembly predicate consideration on optimal assembly sequence generation. Assembly Automation 35 (4):309–16. doi: 10.1108/AA-03-2015-022/FULL/PDF.
  • Seber, G. A. F., and C. J. Wild. 1989. Nonlinear regression. New York: John Wiley & Sons.
  • Shivam, and M. Gupta 2022. “Quality process reengineering in Industry 4.0: A BPR perspective.” Quality Engineering 35(1):110–29. doi: 10.1080/08982112.2022.2098044.[
  • Sinha, K., O. L. de Weck, M. Onishi, M. Maurer, K. Kirner, and U. Lindemann. 2012. Structural complexity metric for engineered complex systems and its application. Paper presented at Gain Competitive Advantage by Managing Complexity: Proceedings of the 14th International DSM Conference, Kyoto, Japan, September 13–14, 181–94.
  • Sinha, K. 2014. Structural complexity and its implications for design of cyber-physical systems. PhD diss., Engineering Systems Division, Massachusetts Institute of Technology.
  • Sony, M., J. Antony, and J. A. Douglas. 2020. Essential ingredients for the implementation of quality 4.0: A narrative review of literature and future directions for research. The TQM Journal 32 (4):779–93. doi: 10.1108/TQM-12-2019-0275.
  • VanDerHorn, E., and S. Mahadevan. 2021. Digital twin: Generalization, characterization and implementation. Decision Support Systems 145 (June):113524. doi: 10.1016/j.dss.2021.113524.
  • Verna, E., G. Genta, M. Galetto, and F. Franceschini. 2021. Inspection planning by defect prediction models and inspection strategy maps. Production Engineering 15 (6):897–915. doi: 10.1007/s11740-021-01067-x.
  • Verna, E., G. Genta, M. Galetto, and F. Franceschini. 2022a. Defect prediction for assembled products: A novel model based on the structural complexity paradigm. The International Journal of Advanced Manufacturing Technology 120 (5–6):3405–26. doi: 10.1007/s00170-022-08942-6.
  • Verna, E., G. Genta, M. Galetto, and F. Franceschini. 2022b. Defects-per-unit control chart for assembled products based on defect prediction models. The International Journal of Advanced Manufacturing Technology 119 (5–6):2835–46. doi: 10.1007/S00170-021-08157-1/FIGURES/8.
  • Yeratapally, S. R., P. E. Leser, J. D. Hochhalter, W. P. Leser, and T. J. Ruggles. 2020. A digital twin feasibility study (part I): Non-deterministic predictions of fatigue life in aluminum alloy 7075-T651 using a microstructure-based multi-scale model. Engineering Fracture Mechanics 228 (April):106888. doi: 10.1016/j.engfracmech.2020.106888.
  • Zhao, Y., D. K. J. Lin, and M.-Q. Liu. 2021. Designs for order-of-addition experiments. Journal of Applied Statistics 48 (8):1475–95. doi: 10.1080/02664763.2020.1801607.
  • Zhu, X., and Y. Ji. 2022. A digital twin-based multi-objective optimization method for technical schemes in process industry. International Journal of Computer Integrated Manufacturing 36 (3):443–68. doi: 10.1080/0951192X.2022.2126013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.