85
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A hierarchical model-based method for wafer level virtual metrology under process information deficiency

, ORCID Icon, , &

References

  • Alakent, B. 2021. Soft-sensor design via task transferred just-in-time-learning coupled transductive moving window learner. Journal of Process Control 101:52–67. doi: 10.1016/j.jprocont.2021.03.006.
  • Besnard, J., D. Gleispach, H. Gris, A. Ferreira, A. Roussy, C. Kernaflen, and G. Hayderer. 2012. Virtual metrology modelling for CVD film thickness. International Journal of Control Science and Engineering 2 (3):26–33. doi: 10.5923/j.control.20120203.02.
  • Dilmi, S. 2023. Calcium soft sensor based on the combination of support vector regression and 1-D digital filter for water quality monitoring. Arabian Journal for Science and Engineering 48 (5):6111–36. doi: 10.1007/s13369-022-07263-w.
  • Futane, N. P., S. Roychowdhury, C. Roychaudhuri, and H. Saha. 2011. Analog ASIC for improved temperature drift compensation of a high sensitive porous silicon pressure sensor. Analog Integrated Circuits and Signal Processing 67 (3):383–93. doi: 10.1007/s10470-010-9580-7.
  • Hirai, T., and M. Kano. 2015. Adaptive virtual metrology design for semiconductor dry etching process through locally weighted partial least squares. IEEE Transactions on Semiconductor Manufacturing 28 (2):137–44. doi: 10.1109/TSM.2015.2409299.
  • Kadlec, P., B. Gabrys, and S. Strandt. 2009. Data-driven soft sensors in the process industry. Computers & Chemical Engineering 33 (4):795–814. doi: 10.1016/j.compchemeng.2008.12.012.
  • Kang, P., D. Kim, H-j Lee, S. Doh, and S. Cho. 2011. Virtual metrology for run-to-run control in semiconductor manufacturing. Expert Systems with Applications 38 (3):2508–22. doi: 10.1016/j.eswa.2010.08.040.
  • Kang, S., D. Kim, and S. Cho. 2016. Efficient feature selection-based on random forward search for virtual metrology modelling. IEEE Transactions on Semiconductor Manufacturing 29 (4):391–8. doi: 10.1109/TSM.2016.2594033.
  • Ke, W., D. Huang, F. Yang, and J. Yongheng. 2017. Soft sensor development and applications based on LSTM in deep neural networks. In 2017 IEEE Symposium Series on Computational Intelligence (SSCI), 1–6.
  • Kurz, D., C. De Luca, and J. Pilz. 2015. A sampling decision system for virtual metrology in semiconductor manufacturing. IEEE Transactions on Automation Science and Engineering 12 (1):75–83. doi: 10.1109/TASE.2014.2360214.
  • Lee, K. B., and C. O. Kim. 2020. Recurrent feature-incorporated convolutional neural network for virtual metrology of the chemical mechanical planarization process. Journal of Intelligent Manufacturing 31 (1):73–86. doi: 10.1007/s10845-018-1437-4.
  • Lin, T. H., M. H. Hung, R. C. Lin, and F. T. Cheng. 2006. A virtual metrology scheme for predicting CVD thickness in semiconductor manufacturing. In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, 2012–2017.
  • Liu, Q., S. Zhou, X. Cheng, H. Cheng, and H. Zhang. 2017. Gas sensor drift compensation by an optimal linear transformation. In International Conference on Big Data Computing & Communications.
  • Liu, Y., X. Yu, J. Zhao, C. Pan, and K. Sun. 2022. Development of a robust data-driven soft sensor for multivariate industrial processes with non-Gaussian noise and outliers. Mathematics 10 (20):3837. doi: 10.3390/math10203837.
  • Mansouri, M., M.-F. Harkat, M. Nounou, and H. Nounou. 2018. Midpoint-radii principal component analysis -based EWMA and application to air quality monitoring network. Chemometrics and Intelligent Laboratory Systems 175:55–64. doi: 10.1016/j.chemolab.2018.01.016.
  • Pisa, I., I. Santín, J. Vicario, A. Morell, and R. Vilanova. 2019. ANN-based soft sensor to predict effluent violations in wastewater treatment plants. Sensors 19 (6):1280. doi: 10.3390/s19061280.
  • Prasad, V., M. Schley, L. P. Russo, and B. Wayne Bequette. 2002. Product property and production rate control of styrene polymerization. Journal of Process Control 12 (3):353–72. doi: 10.1016/S0959-1524(01)00044-0.
  • Purwins, H., B. Barak, A. Nagi, R. Engel, U. Hockele, A. Kyek, S. Cherla, B. Lenz, G. Pfeifer, and K. Weinzierl. 2014. Regression methods for virtual metrology of layer thickness in chemical vapor deposition. IEEE/ASME Transactions on Mechatronics 19 (1):1–8. doi: 10.1109/TMECH.2013.2273435.
  • Roh, H.-J., S. Ryu, Y. Jang, N.-K. Kim, Y. Jin, S. Park, and G.-H. Kim. 2018. Development of the virtual metrology for the nitride thickness in multi-layer plasma-enhanced chemical vapor deposition using plasma-information variables. IEEE Transactions on Semiconductor Manufacturing 31 (2):232–41. doi: 10.1109/TSM.2018.2824314.
  • Shen, F., J. Zheng, L. Ye, and X. Ma. 2020. LSTM soft sensor development of batch processes with multivariate trajectory based ensemble just-in-time learning. IEEE Access 8 (99):73855–64. doi: 10.1109/ACCESS.2020.2988668.
  • Susto, G. A., A. Beghi, and C. D. Luca. 2011. A virtual metrology system for predicting CVD thickness with equipment variables and qualitative clustering. ETFA2011 1–4.
  • Venkatasubramanian, V., R. Rengaswamy, K. Yin, and S. N. Kavuri. 2003. A review of process fault detection and diagnosis Part I: Quantitative model-based methods. Computers & Chemical Engineering 27 (3):293–311. doi: 10.1016/S0098-1354(02)00160-6.
  • Wan, J., and S. McLoone. 2018. Gaussian process regression for virtual metrology-enabled run-to-run control in semiconductor manufacturing. IEEE Transactions on Semiconductor Manufacturing 31 (1):12–21. doi: 10.1109/TSM.2017.2768241.
  • Yuan, X., L. Li, Y. Shardt, Y. Wang, and C. Yang. 2020. Deep learning with spatiotemporal attention-based LSTM for industrial soft sensor model development. IEEE Transactions on Industrial Electronics (99):1–1
  • Zhang, D., L. Duan, Y. Xu, H. Gao, and N. Liu. 2022. ” An ANN-based soft-sensor to estimate the sand content of drilling fluid. In 2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), 1598–1602. IEEE.
  • Zhang, L., and Zhang, D. 2015. Domain adaptation extreme learning machines for drift compensation in E-nose systems. IEEE Transactions on Instrumentation and Measurement 64 (7): 1790–1801. doi: 10.1109/TIM.2014.2367775.
  • Zhao, X., P. Li, K. Xiao, X. Meng, L. Han, and C. Yu. 2019. Sensor drift compensation based on the improved LSTM and SVM multi-class ensemble learning models. Sensors (Basel, Switzerland) 19 (18):7–13. doi: 10.3390/s19183844.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.