93
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Secondary somatosensory area is involved in vibrotactile temporal-structure processing: MEG analysis of slow cortical potential shifts in humans

ORCID Icon, , &
Pages 222-232 | Received 19 Jan 2020, Accepted 15 Jun 2020, Published online: 29 Jun 2020

References

  • Battelli L, Pascual-Leone A, Cavanagh P. 2007. The ‘when’ pathway of the right parietal lobe. Trends Cogn Sci. 11(5):204–210.
  • Bensmaïa SJ, Hollins M. 2003. The vibrations of texture. Somatosens Mot Res. 20(1):33–43.
  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MH, White JS. 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol. 24(3):127–135.
  • Burton H, Sinclair RJ, McLaren DG. 2008. Cortical network for vibrotactile attention: a fMRI study. Hum Brain Mapp. 29(2):207–221.
  • Caetano G, Jousmäki V. 2006. Evidence of vibrotactile input to human auditory cortex. Neuroimage. 29(1):15–28.
  • Cascio CJ, Sathian K. 2001. Temporal cues contribute to tactile perception of roughness. J Neurosci. 21(14):5289–5296.
  • Collins DL, Neelin P, Peters TM, Evans AC. 1994. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr. 18(2):192–205.
  • Colon E, Legrain V, Mouraux A. 2012. Steady-state evoked potentials to study the processing of tactile and nociceptive somatosensory input in the human brain. Neurophysiol Clin. 42(5):315–323.
  • Cruccu G, Aminoff MJ, Curio G, Guerit JM, Kakigi R, Mauguiere F, Rossini PM, Treede RD, Garcia-Larrea L. 2008. Recommendations for the clinical use of somatosensory-evoked potentials. Clin Neurophysiol. 119(8):1705–1719.
  • Dale AM, Fischl B, Sereno MI. 1999. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 9(2):179–194.
  • Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, Halgren E. 2000. Dynamic statistical parametric mapping: combining fMRI and MEG for highresolution imaging of cortical activity. Neuron. 26(1):55–67.
  • Dale AM, Sereno MI. 1993. Improved localizadon of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J Cogn Neurosci. 5(2):162–176.
  • Fischl B, Sereno MI, Dale AM. 1999. Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. Neuroimage. 9(2):195–207.
  • Forss N, Narici L, Hari R. 2001. Sustained activation of the human SII cortices by stimulus trains. Neuroimage. 13(3):497–501.
  • Foxe JJ, Wylie GR, Martinez A, Schroeder CE, Javitt DC, Guilfoyle D, Ritter W, Murray MM. 2002. Auditory-somatosensory multisensory processing in auditory association cortex: an fMRI study. J Neurophysiol. 88(1):540–543.
  • Fujiwara N, Imai M, Nagamine T, Mima T, Oga T, Takeshita K, Toma K, Shibasaki H. 2002. Second somatosensory area (SII) plays a significant role in selective somatosensory attention. Brain Res Cogn Brain Res. 14(3):389–397.
  • Gamzu E, Ahissar E. 2001. Importance of temporal cues for tactile spatial-frequency discrimination. J Neurosci. 21(18):7416–7427.
  • Giabbiconi CM, Dancer C, Zopf R, Gruber T, Müller MM. 2004. Selective spatial attention to left or right hand flutter sensation modulates the steady-state somatosensory evoked potential. Brain Res Cogn Brain Res. 20(1):58–66.
  • Giabbiconi CM, Trujillo-Barreto NJ, Gruber T, Müller MM. 2007. Sustained spatial attention to vibration is mediated in primary somatosensory cortex. Neuroimage. 35(1):255–262.
  • Gutschalk A, Patterson RD, Rupp A, Uppenkamp S, Scherg M. 2002. Sustained magnetic fields reveal separate sites for sound level and temporal regularity in human auditory cortex. Neuroimage. 15(1):207–216.
  • Hagiwara K, Ogata K, Okamoto T, Uehara T, Hironaga N, Shigeto H, Kira J, Tobimatsu S. 2014. Age-related changes across the primary and secondary somatosensory areas: an analysis of neuromagnetic oscillatory activities. Clin Neurophysiol. 125(5):1021–1029.
  • Hagiwara K, Okamoto T, Shigeto H, Ogata K, Somehara Y, Matsushita T, Kira J, Tobimatsu S. 2010. Oscillatory gamma synchronization binds the primary and secondary somatosensory areas in humans. Neuroimage. 51(1):412–420.
  • Hämäläinen MS, Ilmoniemi RJ. 1994. Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Comput. 32(1):35–42.
  • Hari R. 1980. Evoked potentials elicited by long vibrotactile stimuli in the human EEG. Pflugers Arch. 384(2):167–170.
  • Hari R, Aittoniemi K, Järvinen ML, Katila T, Varpula T. 1980. Auditory evoked transient and sustained magnetic fields of the human brain. Localization of neural generators. Exp Brain Res. 40(2):237–240.
  • Harvey MA, Saal HP, Dammann JF, 3rd, Bensmaia SJ. 2013. Multiplexing stimulus information through rate and temporal codes in primate somatosensory cortex. PLoS Biol. 11(5):e1001558.
  • Hayamizu M, Hagiwara K, Hironaga N, Ogata K, Hoka S, Tobimatsu S. 2016. A spatiotemporal signature of cortical pain relief by tactile stimulation: an MEG study. Neuroimage. 130:175–183.
  • Hironaga N, Hagiwara K, Ogata K, Hayamizu M, Urakawa T, Tobimatsu S. 2014. Proposal for a new MEG–MRI co-registration: a 3D laser scanner system. Clin Neurophysiol. 125(12):2404–2412.
  • Hollins M, Bensmaïa SJ, Roy EA. 2002. Vibrotaction and texture perception. Behav Brain Res. 135(1–2):51–56.
  • Hollins M, Risner SR. 2000. Evidence for the duplex theory of tactile texture perception. Percept Psychophys. 62(4):695–705.
  • Hsiao S. 2008. Central mechanisms of tactile shape perception. Curr Opin Neurobiol. 18(4):418–424.
  • Jamali S, Ross B. 2013. Somatotopic finger mapping using MEG: toward an optimal stimulation paradigm. Clin Neurophysiol. 124(8):1659–1670.
  • Jiang W, Tremblay F, Chapman CE. 1997. Neuronal encoding of texture changes in the primary and the secondary somatosensory cortical areas of monkeys during passive texture discrimination. J Neurophysiol. 77(3):1656–1662.
  • Kaas AL, van Mier H, Visser M, Goebel R. 2013. The neural substrate for working memory of tactile surface texture. Hum Brain Mapp. 34(5):1148–1162.
  • Katz D. 1989. The world of touch. In: Krueger LE, translator. Hillsdale (NJ): Erlbaum.
  • Keceli S, Okamoto H, Kakigi R. 2015. Hierarchical neural encoding of temporal regularity in the human auditory cortex. Brain Topogr. 28(3):459–470.
  • Kodaira M, Wasaka T, Motomura E, Tanii H, Inui K, Kakigi R. 2013. Effects of acute nicotine on somatosensory change-related cortical responses. Neuroscience. 229:20–26.
  • Li Hegner Y, Saur R, Veit R, Butts R, Leiberg S, Grodd W, Braun C. 2007. BOLD adaptation in vibrotactile stimulation: neuronal networks involved in frequency discrimination. J Neurophysiol. 97(1):264–271.
  • Manfredi LR, Saal HP, Brown KJ, Zielinski MC, Dammann JF, 3rd, Polashock VS, Bensmaia SJ. 2014. Natural scenes in tactile texture. J Neurophysiol. 111(9):1792–1802.
  • Mauguiere F, Garcia-Larrea L. 2018. Somatosensory and pain evoked potentials: normal responses, abnormal waveforms, and clinical applications in neurological diseases. In: Schomer DL, Lopes da Silva FH, editors. Electroencephalography: basis principles, clinical applications, and related fields, 7 ed. Oxford: Oxford University Press; p. 1071.
  • Mima T, Nagamine T, Nakamura K, Shibasaki H. 1998. Attention modulates both primary and second somatosensory cortical activities in humans: a magnetoencephalographic study. J Neurophysiol. 80(4):2215–2221.
  • Miyaji H, Hironaga N, Umezaki T, Hagiwara K, Shigeto H, Sawatsubashi M, Tobimatsu S, Komune S. 2014. Neuromagnetic detection of the laryngeal area: sensory-evoked fields to air-puff stimulation. Neuroimage. 88:162–169.
  • Molins A, Stufflebeam SM, Brown EN, Hämäläinen MS. 2008. Quantification of the benefit from integrating MEG and EEG data in minimum l2-norm estimation. Neuroimage. 42(3):1069–1077.
  • Münte TF, Jöbges EM, Wieringa BM, Klein S, Schubert M, Johannes S, Dengler R. 1996. Human evoked potentials to long duration vibratory stimuli: role of muscle afferents. Neurosci Lett. 216(3):163–166.
  • Nangini C, Ross B, Tam F, Graham SJ. 2006. Magnetoencephalographic study of vibrotactile evoked transient and steady-state responses in human somatosensory cortex. Neuroimage. 33(1):252–262.
  • Okamoto H, Kakigi R. 2015. Encoding of frequency-modulation (FM) rates in human auditory cortex. Sci Rep. 5:18143.
  • Onishi H, Oyama M, Soma T, Kubo M, Kirimoto H, Murakami H, Kameyama S. 2010. Neuromagnetic activation of primary and secondary somatosensory cortex following tactile-on and tactile-off stimulation. Clin Neurophysiol. 121(4):588–593.
  • Pang CY, Mueller MM. 2014. Test-retest reliability of concurrently recorded steady-state and somatosensory evoked potentials in somatosensory sustained spatial attention. Biol Psychol. 100:86–96.
  • Pantev C, Eulitz C, Elbert T, Hoke M. 1994. The auditory evoked sustained field: origin and frequency dependence. Electroencephalogr Clin Neurophysiol. 90(1):82–90.
  • Pleger B, Foerster AF, Ragert P, Dinse HR, Schwenkreis P, Malin JP, Nicolas V, Tegenthoff M. 2003. Functional imaging of perceptual learning in human primary and secondary somatosensory cortex. Neuron. 40(3):643–653.
  • Preusser S, Thiel SD, Rook C, Roggenhofer E, Kosatschek A, Draganski B, Blankenburg F, Driver J, Villringer A, Pleger B. 2015. The perception of touch and the ventral somatosensory pathway. Brain. 138(Pt 3):540–548.
  • Rao SM, Mayer AR, Harrington DL. 2001. The evolution of brain activation during temporal processing. Nat Neurosci. 4(3):317–323.
  • Regan D editor. 1989. Human brain electrophysiology. Evoked potentials and evoked magnetics fields in science and medicine. New York (NY): Elsevier.
  • Rocchi L, Casula E, Tocco P, Berardelli A, Rothwell J. 2016. Somatosensory temporal discrimination threshold involves inhibitory mechanisms in the primary somatosensory area. J Neurosci. 36(2):325–335.
  • Romo R, Hernandez A, Zainos A, Lemus L, Brody CD. 2002. Neuronal correlates of decision-making in secondary somatosensory cortex. Nat Neurosci. 5(11):1217–1225.
  • Romo R, Salinas E. 2003. Flutter discrimination: neural codes, perception, memory and decision making. Nat Rev Neurosci. 4(3):203–218.
  • Ryun S, Kim JS, Lee H, Chung CK. 2017. Tactile frequency-specific high-gamma activities in human primary and secondary somatosensory cortices. Sci Rep. 7(1):15442.
  • Simões-Franklin C, Whitaker TA, Newell FN. 2011. Active and passive touch differentially activate somatosensory cortex in texture perception. Hum Brain Mapp. 32(7):1067–1080.
  • Snyder A. 1992. Steady-state vibration evoked potentials: descriptions of technique and characterization of responses. Electroencephalogr Clin Neurophysiol. 84(3):257–268.
  • Taulu S, Kajola M, Simola J. 2004. Suppression of interference and artifacts by the signal space separation method. Brain Topogr. 16(4):269–275.
  • Taulu S, Simola J. 2006. Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Phys Med Biol. 51(7):1759–1768.
  • Tobimatsu S, Zhang Y, Kato M. 1999. Steady-state vibration somatosensory evoked potentials: physiological characteristics and tuning function. Clin Neurophysiol. 110(11):1953–1958.
  • Weber AI, Saal HP, Lieber JD, Cheng JW, Manfredi LR, Dammann JF, Bensmaia SJ. 2013. Spatial and temporal codes mediate the tactile perception of natural textures. Proc Natl Acad Sci USA. 110(42):17107–17112.
  • Yamashiro K, Inui K, Otsuru N, Urakawa T, Kakigi R. 2011. Temporal window of integration in the somatosensory modality: an MEG study. Clin Neurophysiol. 122(11):2276–2281.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.