1,414
Views
18
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLES

Inoculation of phosphate-solubilizing bacteria Bacillus thuringiensis B1 increases available phosphorus and growth of peanut in acidic soil

, &
Pages 252-259 | Received 26 Dec 2013, Accepted 11 Mar 2014, Published online: 10 Apr 2014

References

  • Abd-Alla MH. 1994. Phosphatases and the utilization of organic phosphorus by Rhizobium leguminosarum biovar viceae. Lett Appl Microbiol. 18:294–296. 10.1111/j.1472-765X.1994.tb00873.x
  • Banik S, Dey BK. 1983. Alluvial soil microorganisms capable of utilizing insoluble aluminium phosphate as a sole source of phosphorus. Z Mikrobiol. 138:437–442.
  • Bashan Y, Holguin G. 1997. Azospirillum-plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol. 43:103–121. 10.1139/m97-015
  • Chang SC, Jackson ML. 1957. Fractionation of soil phosphorus. Soil Sci. 84:133–144. 10.1097/00010694-195708000-00005
  • Dinkelaker B, Hengeler C, Marschner H. 1995. Distribution and function of proteoid roots and other root clusters. Bot Acta. 108:183–200.
  • El-Komy HM. 2005. Coimmobilization of Azospirillum lipoferum and Bacillus megaterium for successful phosphorus and nitrogen nutrition of wheat plants. Food Technol Biotech. 43:19–27.
  • Fasim F, Ahmed N, Parsons R, Gadd GM. 2002. Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett. 213:1–6.
  • Firáková S, Šturdíková M, Múčková M. 2007. Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia. 62:251–257. 10.2478/s11756-007-0044-1
  • Goldstein AH, Braverman K, Osorio N. 1999. Evidence for mutualism between a plant growing in a phosphate-limited desert environment and a mineral phosphate solubilizing (MPS) rhizobacterium. FEMS Microbiol Ecol. 30:295–300. 10.1111/j.1574-6941.1999.tb00657.x
  • Gong S, Wang X, Zhang T, Li Q, Zhou J. 2010. Release of inorganic phosphorus from red soils induced by low molecular weight organic acids. Acta Pedologica Sinica. 47:692–697.
  • Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y. 2008. Rock phosphate-solubilizing Actinomycetes: screening for plant growth-promoting activities. World J Microbiol Biotechnol. 24:2565–2575. 10.1007/s11274-008-9817-0
  • Hao J, Hong J, Liu B, Zhang J. 2006. Isolation, screening and combination of highly-effective phosphorus solubilizing bacterial strains in calcareous soil. Chin J Appl Environ Biol. 12:404–408.
  • Illmer P, Schinner F. 1992. Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biol Biochem. 24:389–395. 10.1016/0038-0717(92)90199-8
  • Iyamuremye F, Dick RP, Baham J. 1996. Organic amendments and phosphorus dynamics: Phosphorus speciation. Soil Sci. 161:444–451. 10.1097/00010694-199607000-00004
  • Jackson ML. 1973. Soil chemical analysis. New Delhi: Prentice Hall of India. 372 pp.
  • Jones DL, Darrah PR. 1994. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil. 112:19–30.
  • Jorquera M, Hernández M, Rengel Z, Marschner P, Mora ML. 2008. Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biol Fert Soils. 44:1025–1034. 10.1007/s00374-008-0288-0
  • Juhi Y, Swati Y, Samuel GS. 2011. Plant growth promotion in wheat crop under environmental condition by PSB as bio-fertilizer. Res J Agric Sci. 2:76–78.
  • Li X, Ding X, Xia L, Sun Y, Yuan C, Yin J. 2012. Proteomic analysis of Bacillus thuringiensis strain 4.0718 at different growth phases. Sci World J. 2012:1–10.
  • Lin QM, Wang H, Zhao XR, Zhao ZJ. 2001. Capacity of some bacteria and fungi in dissolving phosphate rock. Microbiology. 28:26–30.
  • Lopez BR, Bashan Y, Bacilio M. 2011. Endophytic bacteria of Mammillaria fraileana, an endemic rock-colonizing cactus of the southern Sonoran Desert. Arch Microbiol. 193:527–541. 10.1007/s00203-011-0695-8
  • Lou YS, Li ZP, Zhang TL. 2003. Carbon dioxide flux in a subtropical agricultural soil of china. Water Air Soil Poll. 1:281–293. 10.1023/A:1025727504841
  • Lu RK. 2000. Agricultural chemical analysis of soil. Beijing: China Agricultural Science and Technology Press. pp. 431–433.
  • Luo J, Ran W, Hu J, Yang X, Xu Y, Shen Q. 2010. Application of bio-organic fertilizer significantly affected fungal diversity of soils. Soil Sci Soc Am J. 74:2039–2048. 10.2136/sssaj2009.0437
  • Luo HM, Watanabe T, Shinano T, Tadano T. 1999. Comparison of aluminum tolerance and phosphate absorption between rape (Brassica napus L.) and tomato (Lycopersicum esculentum Mill.) in relation to organic acid exudation. Soil Sci Plant Nutr. 45:897–907. 10.1080/00380768.1999.10414339
  • Malboobi MA, Behbahani M, Madanin H, Owlia P, Deljou A,Yakhchali B, Moradi M, Hassanabadi H. 2009. Performance evaluation of potent phosphate solubilizing bacteria in potato rhizosphere. World J Microbiol Biotech. 25:1479–1484. 10.1007/s11274-009-0038-y
  • Narsian V, Patel HH. 2000. Aspergillus aculeatus as a rock phosphate solubilizer. Soil Biol Biochem. 32:559–565. 10.1016/S0038-0717(99)00184-4
  • Narsian V, Thakkar J, Patel HH. 1995. Mineral phosphate solubilization by Aspergillus aculeatus. Indian J Exp Microbiol. 33:91–93.
  • Nautiyal CS. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett. 170:265–270. 10.1111/j.1574-6968.1999.tb13383.x
  • Perez E, Sulbaran M, Ball MM, Yarzabal LA. 2007. Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biol Biochem. 39:2905–2914. 10.1016/j.soilbio.2007.06.017
  • Pikovskaya RI. 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya. 17:362–370.
  • Podile AR, Kishore GK. 2006. Plant growth-promoting rhizobacteria. In: Gnanamanickam S, editor. Plant-associated bacteria. Netherlands: Springer; p. 195–230.
  • Renganathan K, Rathinam X, Danial M. 2011. Quick isolation and characterization of novel Bacillus thuringiensis strains from mosquito breeding sites in Malaysia. Emir J Food Agric. 23:17–26.
  • Rodriguez H, Fraga R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotech Adv. 17:319–339. 10.1016/S0734-9750(99)00014-2
  • Rohr M, Kubicek CP, Kominek J. 1983. Gluconic acid. In: Rehm HJ, Reed G, editor. Biotechnology III. Wienheim: Verlag Chemie; p. 456–465.
  • Rosas, SB, Andres, JA, Rovera M, Nestor SC. 2006. Phosphate solubilizing Pseudomonas putida can influence the rhizobia legume symbiosis. Soil Biol Biochem. 38:3502–3505. 10.1016/j.soilbio.2006.05.008
  • Shen R, Jiang B. 1992. The distribution and effectiveness of inorganic phosphorus classification in calcareous soil. Acta Pedologica Sinica. 29:80–85.
  • Shi Y, Wu X. 1998. The influence of available phosphorus effectiveness in the red soil tea garden by phosphorus solubilizing microbial inoculum. Chin Tea. 3:38–39.
  • Singh H, Reddy MS. 2011. Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils. Eur J Soil Biol. 47:30–34. 10.1016/j.ejsobi.2010.10.005
  • Sundara B, Natarajan V, Hari K. 2002. Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Res. 77:43–49. 10.1016/S0378-4290(02)00048-5
  • Wang M, Chen X. 2005. Obstacle and countermeasure of sustainable high yield for peanut in low-hilly red soil region. J Pean Sci. 34:17–22.
  • Watanabe FS, Olsen SR. 1965. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci Soc Am J. 29:677–678. 10.2136/sssaj1965.03615995002900060025x
  • Whitelaw MA, Harden TJ, Bender GL. 1997. Plant growth promotion of wheat inoculated with Penicillium radicum sp. nov. Aust J Soil Res. 35:291–300. 10.1071/S96040
  • Whitelaw MA, Harden TJ, Helyar KR. 1999. Phosphate solubilisation in solution culture by the soil fungus Penicillium radicum. Soil Biol Biochem. 31:655–665. 10.1016/S0038-0717(98)00130-8
  • Xiang H, Weng H, Kong X. 2003. Distribution of bound phosphorus in lateritic soils and their sensitivity to acidity. J Agro-Environ Sci. 22:138–141.
  • Yi Y, Huang W, Ge Y. 2008. Exopolysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate. World J Microbiol Biotech. 24:1059–1065. 10.1007/s11274-007-9575-4
  • Young CC. 1994. Selection and application of biofertilizers in Taiwan. FFTC. 141:1–9.
  • Young CC, Chang CH, Chen LF, Chao CC. 1998. Characterization of the nitrogen fixing and ferric phosphate solubilizing bacteria isolated from Taiwan soil. J Chin Agric Chem. 36:201–210.
  • Zhang HJ, Wei ZG, Zhao HY, Yang HX, Li HX, Hu F. 2009. Effects of low-molecular-weight organic acids on gadolinium accumulation and transportation in tomato plants. Biol Trace Elem Res. 127:81–93. 10.1007/s12011-008-8224-6
  • Zhu F, Qu L, Hong X, Sun X. 2011. Isolation and characterization of a phosphate solubilizing halophilic bacterium kushneria sp. YCWA18 from Daqiao Saltern on the Coast of Yellow Sea of China. Evid Based Complement Alternat Med. 2011:6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.