780
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Leaf gas exchange and water-use efficiency of dry-land wheat genotypes under water stressed and non-stressed conditions

, , &
Pages 738-748 | Received 21 Mar 2018, Accepted 14 May 2018, Published online: 31 May 2018

References

  • Abdullah F, Hareri M, Naaesan M, Ammar MA, Kanbar OZ. 2011. Effect of drought on different physiological characters and yield components in different varieties of Syrian durum wheat. J Agric Sci. 3:127–133.
  • Akhkha A, Boutraa T, Alhejely A. 2011. The rate of photosynthesis, chlorophyll content, dark respiration, proline and Abscicic acid (ABA) in wheat (Triticum durum) under water deficit conditions. Int J Agric Biol. 13:215–221.
  • Athar HR, Ashraf M. 2009. Strategies for crop improvement against salinity and water stress: an overview. In: Ashraf M, Ozturk M, Athar HR, editors. Salinity and water stress: improving crop efficiency. Germany: Spinger-Verlag; p. 1–16.
  • Bartels DA, Furini JI, Salamini F. 1996. Responses of plants to dehydration stress: a molecular analysis. Plant Growth Reg. 20:111–118. doi: 10.1007/BF00024007
  • Blum A. 1996. Crop responses to drought and the interpretation of adaptation. Plant Growth Reg. 20:135–148. doi: 10.1007/BF00024010
  • Blum A. 2005. Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Austr J Agric Res. 56:1159–1168. doi: 10.1071/AR05069
  • Blum A. 2009. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res. 112:119–123. doi: 10.1016/j.fcr.2009.03.009
  • Brodribb T. 1996. Dynamics of changing intercellular CO2 concentration (Ci) during drought and determination of minimum functional Ci. Plant Physiol. 111:179–185. doi: 10.1104/pp.111.1.179
  • Chaves MM, Maroco J, Pereira JS. 2003. Understanding plant response to drought-from genes to the whole plant. Funct Plant Biol. 30:239–264. doi: 10.1071/FP02076
  • Chen C, Wang E, Yu Q. 2010. Modelling the effects of climate variability and water management on crop water productivity and water balance in the North China Plain. Agric Water Manag. 97:1174–1183.
  • Cornic G. 2000. Drought stress inhibits photosynthesis by decreasing stomatal aperture, not by affecting ATP synthesis. Trends Plant Sci. 5:187–188. doi: 10.1016/S1360-1385(00)01625-3
  • Deng XP, Shan L, Zhang HP, Turner NC. 2006. Improving agricultural water use efficiency in arid and semiarid areas of China. Agric Water Manag. 80:23–40. doi: 10.1016/j.agwat.2005.07.021
  • Dong B, Liu M, Shao H, Li Q, Shi L, Du F, Zhang Z. 2008. Investigation on the relation between leaf water use efficiency and physio-biochemical traits of winter wheat under rained condition. Coll Surf B. 62:280–287. doi: 10.1016/j.colsurfb.2007.10.023
  • Dong C, Shao L, Wang M, Liu G, Liu H, Xie B, Li B, Fu Y, Liu H. 2016. Wheat carbon dioxide responses in space simulations conducted at the Chinese Lunar Palace-1. Agron J. 108:32–38. doi: 10.2134/agronj15.0265
  • Dube E, Mare-Patose R, Kilian W, Barnard A, Tsilo TJ. 2015. Identifying high-yielding dryland wheat cultivars for the summer rainfall area of South Africa. S Afr J Plant Soil. 33:77–81. doi: 10.1080/02571862.2015.1061712
  • Ehleringer JR, Hall AE, Farguhar GD. 1993. Introduction: water use in relation to productivity. In: Ehleringer JR, Hall AE, Farguhar G.D, editors. Stable isoptopes and plant carbon-water relations. San Diego: Academic Press; p. 3–7.
  • FAO. 2002. Plant production and protection series. No. 30. [accessed 10 November 2015]. www.fao.org/docrep/006/y4011e/y4011eoo.htm#.
  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. 2009. Plant drought stress: effect, mechanism and management. Agron Sust Develop. 29:185–212. doi: 10.1051/agro:2008021
  • Farquhar GD, Ehleringer JR, Hubick KT. 1989. Carbon isotope discrimination and photosynthesis. Ann Rev Plant Physiol. 40:503–537. doi: 10.1146/annurev.pp.40.060189.002443
  • Flexas J, Barón M, Bota J, Ducruet JM, Gallé A, Galmés J, Jiménez M, Pou A, Ribas-Carbó M, Sajnani C, et al. 2009. Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri×V. rupestris). J Exp Bot. 60:2361–2377. doi: 10.1093/jxb/erp069
  • Flexas J, Ortuno MF, Ribas-Carbó M, Diaz-Espejo A, Florez-Sarasa ID, Medrano H. 2007. Mesophyll conductance to CO2 in Arabidopsis thaliana. New Phytol. 175:501–511. doi: 10.1111/j.1469-8137.2007.02111.x
  • Hu LX, Wang ZL, Huang BR. 2010. Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis from drought stress in a C3 perennial grass species. Acta Physiol Plant. 139:93–106. doi: 10.1111/j.1399-3054.2010.01350.x
  • Jackson P, Basnayake J, Inman-Bamber G, Lakshmanan P, Natarajan S, Stokes C. 2016. Genetic variation in transpiration efficiency and relationships between whole plant and leaf gas exchange measurements in Saccharum spp. and related germplasm. J Exp Bot. 67:861–871. doi: 10.1093/jxb/erv505
  • Lantican M, Pingali P, Rajaram S. 2001. Growth in wheat yield potential marginal environments. In: Reeves J, McNab A, Rajaram S, editors. Proceedings of the Warren E. Kronstad Symposium, Ciudad Obregón, Sonora, Mexico. p. 73–79.
  • Lawlor DW, Tezara W. 2009. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann Bot. 103:561–579. doi: 10.1093/aob/mcn244
  • Lawson T, Blatt MR. 2014. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol. 164:1556–1570. doi: 10.1104/pp.114.237107
  • Mashilo J, Odindo AO, Shimelis HA, Musenge P, Tesfay SZ, Magwaza LS. 2017. Drought tolerance of selected bottle gourd [Lagenaria siceraria (Molina) Standl.] landraces assessed by leaf gas exchange and photosynthetic efficiency. Plant Physiol Biochem. 120:75–87. doi: 10.1016/j.plaphy.2017.09.022
  • Medrano H, Tomasa M, Martorell S, Flexas J, Hernandez E, Rossello J, Poub A, Escalona JS, Bota J. 2015. From leaf to whole-plant water use efficiency (WUE) in complex canopies: limitations of leaf WUE as a selection target. Crop J. 3:220–228. doi: 10.1016/j.cj.2015.04.002
  • Michihiro W, Lui JCB, Garvalho GC. 1994. Cultivar difference in leaf photosynthesis and grain yield of wheat under soil water deficit conditions. Jap J Crop Sci. 63:339–344. doi: 10.1626/jcs.63.339
  • Monneveux P, Rekika D, Acevedo E, Merah O. 2006. Effect of drought on leaf gas exchange, carbon isotope discrimination, transpiration efficiency and productivity in the field grown durum wheat genotypes. Plant Sci. 170:867–872. doi: 10.1016/j.plantsci.2005.12.008
  • Moud AAM, Yamagishi T. 2006. Gas exchange responses of different wheat (triticum aestivum L.) cultivars to water stress condition. Int J Agric Biol. 1:102–105.
  • Mwadzingeni L, Shimelis H, Tesfay S, Tsilo TJ. 2016. Screening of bread wheat genotypes for drought tolerance using phenotypic and proline analyses. Front Plant Sci. 7:1–12. doi: 10.3389/fpls.2016.01276
  • Parry MAJ, Andralojc PJ, Khan S, Lea PJ, Keys AJ. 2002. Rubisco activity: Effects of drought stress. Ann Bot. 89:833–838. doi: 10.1093/aob/mcf103
  • Ripley BS, Gilbert ME, Ibrahim DG, Osborne CP. 2007. Drought constraints on C4 photosynthesis: stomatal and metabolic limitations in C3 and C4 subspecies of Alloteropsis semialata. J Exp Bot. 58:1351–1363. doi: 10.1093/jxb/erl302
  • Santos MG, Ribeiro RV, Machado EC, Pimentel C. 2009. Photosynthesis parameters and leaf water potential of five common bean genotypes under mild water deficit. Biol Plant. 53:229–236. doi: 10.1007/s10535-009-0044-9
  • Silva ALC, Costa WAJM. 2009. Varietal variation in stomatal conductance, transpiration and photosynthesis of commercial sugarcane varieties under two contrasting water regimes. Trop Agric Res Ext. 12:97–102. doi: 10.4038/tare.v12i2.2798
  • Silva MA, Jifon JL, Santos CM, Jadoskki CJ, Silva JAG. 2013. Photosynthetic capacity and water use efficiency in sugarcane genotypes subjected to water deficit during early growth phase. Braz Arch Biol Technol. 56:735–748. doi: 10.1590/S1516-89132013000500004
  • Singh SK, Raja Reddy K. 2011. Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata [L.]Walp.) under drought. J Photochem Photobiol B. 105:40–50. doi: 10.1016/j.jphotobiol.2011.07.001
  • Sourour A, Afel O, Mounir R, Mongi BY. 2017. A review: morphological, physiological, biochemical and molecular plant responses to water deficit stress. Int J Eng Sci. 6:01–04. doi: 10.9790/1813-0601010104
  • Tambussi EA, Bort J, Araus JL. 2007. Water use efficiency in C4 cereal under Mediterranean conditions: a review of some physiological aspects. CIHEAM (Options Mediterranean’s: Series B. 57:189–203.
  • Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW. 1999. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature. 401:914–917. doi: 10.1038/44842
  • Varga B, Vida G, Varga-László E, Bencze S, Veisz O. 2015. Effect of simulating drought in various phenophases on the water use efficiency of winter wheat. J Agron Crop Sci. 201:1–9. doi: 10.1111/jac.12087
  • Xu Z, Zhou G. 2008. Response of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J Exp Bot. 59:3317–3325. doi: 10.1093/jxb/ern185
  • Yildirim A, Sönmezoğlu ÖA, Sayaslan A, Koyuncu AM, Güleç T, Kandemir N. 2013. Marker-assisted breeding of a durum wheat cultivar for γ-gliadin and LMW-glutenin proteins affecting pasta quality. Turk J Agric For. 37:527–533. doi: 10.3906/tar-1207-75

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.