5,847
Views
8
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLES

Groundnut (Arachis hypogaea L.) improvement in sub-Saharan Africa: a review

, , &
Pages 528-545 | Received 18 Jan 2019, Accepted 25 Mar 2019, Published online: 07 Apr 2019

References

  • African Institute of Corporate Citizenship. 2016. Malawi Groundnut Outlook. TAURUS House Executive Offices City Centre, Along Convention Drive P/Bag 382 Lilongwe 3 Malawi.
  • Ahmed MSH, Mohamed SMS. 2009. Improvement of groundnut (Arachis hypogaea L. productivity under saline condition through mutation induction. World J Agric Sci. 5:680–685.
  • Amare K, Bushra F. 2012. Registration of BaHa-jidu and BaHa-gudo groundnut (Arachis hypogaea L.) varieties. East Afr J Sci. 6:79–80.
  • Amare KB, Negussie FB, Tsegu K. 2017. Commercial peanut cultivars for the improvement of seed physicochemicals and fatty acids. Vegetos. 30:99–103.
  • Alemayehu C, Berhanu A, Mulugeta T, Abdi M, Tameru A, Helge S. 2014. Opportunities and constraints of groundnut production in selected drylands of Ethiopia. DCG Report No.74. Drylands Coordination Group.
  • Asibuo JW, Akromah R, Safo-Kantanka O, Adu-Dapaah HK, Ohemeng-Dapaah S, Agyeman A. 2008. Chemical composition of groundnut, Arachis hypogaea (L) landraces. Afr J Biotechnol. 7:2203–2208.
  • Asif MA, Zafar Y, Iqbal J, Iqbal MM, Rashid U, Ali GM, Arif A, Nazir F. 2011. Enhanced expression ofAtNHX1, in transgenic groundnut (Arachis hypogaea L.) improves salt and drought tolerance. Mol Biotechnol. 49:250–256. doi: 10.1007/s12033-011-9399-1
  • Asthana AN, Ali M, Chaturvedi SK. 1996. Chickpea. In: Paroda RS, Chadha KL, editor. 50 years of crop science research in India. New Delhi: Indian Council of Agricultural Research; p. 287–296.
  • Awada L, Phillips PWB, Smyth SJ. 2018. The adoption of automated phenotyping by plant breeders. Euphytica. 214:148. doi: 10.1007/s10681-018-2226-z
  • Azad MAK, Hamid MA, Yasmine F. 2014. Enhancing abiotic stress tolerance in groundnut through induced mutation. In: Tomlekova NB, Kozgar MI, Wani MR, editors. Mutagenesis: exploring genetic diversity of crops. p. 331–346. doi:10.3920/978-90-8686-796-7_1.
  • Bagwan HV, Akkiraju PC. 2015. Effect of physical and chemical mutagens on rhizobium and study of mutated rhizobium activity on seed germination and antibiotic sensitivity. Int J Adv Res. 3:1045–1056.
  • Bai G, Ge Y, Hussain W, Baenziger PS, Graef G. 2016. A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding. Comp Electr Agric. 128:181–192. doi: 10.1016/j.compag.2016.08.021
  • Banavath JN, Chakradhar T, Pandit V, Konduru S, Guduru KK, Akila CS, Podha S, Puli COR. 2018. Stress inducible overexpression of AtHDG11 leads to improved drought and salt stress tolerance in peanut (Arachis hypogaea L.). Front Chem. 6. doi:10.3389/fchem.2018.00034.
  • Bhad PG, Mondal S, Badigannavar AMJ. 2016. Genetic diversity in groundnut (Arachis hypogaea L.) genotypes and detection of marker trait associations for plant habit and seed size using genomic and genic SSRs. Crop Sci Biotechnol. 19:203–221. doi:10.1007/s12892-016-0060-1.
  • Bhagwat A, Krishna TG, Bhatia CRJ. 1997. Rapd analysis of induced mutants of groundnut (Arachis hypogaea L. J Genet. 76:201–208. doi:10.1007/BF02932218.
  • Bhattarai SP, de la Pena RC, Midmore DJ, Palchamy K. 2009. In vitro culture of immature seed for rapid generation advancement in tomato. Euphytica. 167:23–30. doi: 10.1007/s10681-008-9855-6
  • Brasileiro MAC, Guerra Araujo AC, Leal-Bertioli SC, Guimarães PM. 2014. Genomics and genetic transformation in Arachis. Int J Plant Biol Res. 2:1017.
  • Brar GS, Cohen BA, Vick CL, Johnson GW. 1994. Recovery of transgenic peanut (Arachis hypogaea L.) plants from elite cultivars utilizing ACCELL technology. Plant J. 5:745–753. doi: 10.1111/j.1365-313X.1994.00745.x
  • Brock RD. 1977. Prospects and perspectives in mutation breeding. In: Muhammed A, Aksel R, von Borstel RC, editors. Genetic diversity in plants. Basic life sciences, Vol. 8. Boston (MA): Springer. p. 117–132.
  • Busolo-Bulafu CM. 1991. Mutation breeding of groundnuts (Arachis hypogaea L.) in Uganda. Vienna: International Atomic Energy Agency (IAEA).
  • Burow MD, Leal-Bertioli SC, Simpson CE, Ozias-Akins P, Chu Y, Denwar NN, Chagoya J, Starr JL, Moretzsohn MC, Pandey MK, et al. 2013. Marker-assisted selection for biotic stress resistance in peanut. In: Varshney RK, Tuberosa R, editors. Translational genomics for crop breeding. doi:10.1002/9781118728475.ch8.
  • Cilliers AJ, Swanevelder CJ. 2003. The South African germplasm collection of groundnut. Arachis Hypogaea L., and its Utility. SA J. Plant Soil. 20:93–96.
  • Chamberlin KD, Melouk HA, Madden R, Dillwith JW, Bannore Y, El Rassi Z, Payton M. 2011. Determining the oleic/linoleic acid ratio in a single peanut seed: a comparison of two methods. Peanut Sci. 38:78–84. doi: 10.3146/PS11-3.1
  • Coulibaly MA, Ntare P, Gracen Danquah BR, Gracen VE, Kwadwo O. 2017. Groundnut production constraints and farmers’ preferred varieties in Niger. Int J Innov Sci Eng Technol. 4:2348–7968.
  • Chintu JMM. 2013. Breeding groundnut for resistance to rosette disease and its aphid vector, Aphis craccivora Koch in Malawi [PhD thesis]. University of KwaZulu-Natal Pietermaritzburg, Republic of South Africa.
  • Crespo-Herrera LA, Crossa J, Huerta-Espino J, Vargas M, Mondal S, Velu G, Payne TS, Braun H, Singh RP. 2018. Genetic gains for grain yield in CIMMYT’s semi-arid wheat yield trials grown in suboptimal environments. Crop Sci. 58:1890–189. doi: 10.2135/cropsci2018.01.0017
  • Collard BCY, Beredo JC, Lenaerts B, Mendoza R, Santelices R, Lopena V, Verdeprado H, Raghavan C, Gregorio GB, Vial L, et al. 2017. Revisiting rice breeding methods—evaluating the use of rapid generation advance (RGA) for routine rice breeding. Plant Prod Sci. 20:337–352. doi:10.1080/1343943X.2017.1391705.
  • Corrado G, Rao R. 2017. Towards the genomic basis of local adaptation in landraces. Diversity (Basel). 9:51. doi:10.3390/d9040051.
  • Chu Y, Holbrook CC, Timper P, Ozias-Akins P. 2007. Development of a PCR-based molecular marker to select for nematode resistance in peanut. Crop Sci. 47:841–847. doi:10.2135/cropsci2006.07.0474.
  • David V, Řepková J. 2017. Application of next-generation sequencing in plant breeding. Czech J Genet Plant Breed. 53:89–96. doi: 10.17221/192/2016-CJGPB
  • Debele S, Amare A. 2015. Integrated management of Cercospora leaf spots of groundnut (Arachis hypogaea L.) through host resistance and fungicides in Eastern Ethiopia. Afr J Plant Sci. 9:82–89. doi:10.5897/AJPS2014.1260.
  • Deom CM, Kapewa T, Busolo-Bulafu CM, Naidu RA, Chiyembekeza AJ, Kimmins FM. 2006. Registration of ICG 12991 peanut germplasm line. Crop Sci. 46:481.
  • Desmae H, Janila P, Okori P, Pandey MK, Motagi BN, Monyo E, Mponda O, Okello D, Sako D, Echeckwu C, et al. 2017. Genetics, genomics and breeding of groundnut (Arachis hypogaea L.). Plant Breed. 1–20.
  • Desmae H, Sones K. 2017. Groundnut cropping guide. Africa soil health Consortium. Nairobi: CAB International.
  • FAOSTAT. 2016. [accessed 2018 Feb 16] http://www.fao.org/faostat/en/#data/QC.
  • Favero AP, Padua JG, Costa TS, Gimenes MA, Godoy IJ, Moretzsohn MC, Michelotto MD. 2015. New hybrids from peanut (Arachis hypogaea L.) and synthetic amphidiploid crosses show promise in increasing pest and disease tolerance. Genet Mol Res. 14:16694–16703. doi: 10.4238/2015.December.11.17
  • Faye B, Webber H, Gaiser T, Diop M, Owusu-Sekyere JD, Naab JB. 2016. Effects of fertilization rate and water availability on peanut growth and yield in Senegal (West Africa). J Sustain Develop. 9:111–131. doi: 10.5539/jsd.v9n6p111
  • Faye I, Pandey MK, Hamidou F, Rathore A, Ndoye O, Vadez V, Varshney RK. 2015. Identification of quantitative trait loci for yield and yield related traits in groundnut (Arachis hypogaea L.) under different water regimes in Niger and Senegal. Euphytica. 206:631–641. doi:10.1007/s10681-015-1472-6.
  • Ferguson ME, Burow MD, Schulze SR, Bramel PJ, Paterson AH, Kresovich S, Mitchell S. 2004. Microsatellite identification and characterization in peanut (A. hypogaea L.). Theor Appl Genet. 108:1064–1070. doi: 10.1007/s00122-003-1535-2
  • Frisch M, Melchinger AE. 2005. Selection theory for marker-assisted backcrossing. Genetics. 170:909–917. doi:10.1534/genetics.104.035451.
  • Gaikpa DS, Akromah R, Asibuo JW, Appiah-Kubi Z, Nyadanu D. 2015. Evaluation of yield and yield components of groundnut genotypes under Cercospora leaf spots disease pressure. Int J Agron Agric. Res. 3:66–75.
  • Gaur PM, Srinivasan S, Gowda CLL, Rao BV. 2007. Rapid generation advancement in chickpea. J Agric Res. 3:1–3.
  • Gorbet DW, Knauft DA. 1997. Registration of ‘SunOleic 95R’ peanut. Crop Sci. 37:1392. doi: 10.2135/cropsci1997.0011183X003700040081x
  • Guchi E. 2015. Stakeholders’ perception about aflatoxin contamination in groundnut (arachis hypogaea L.) along the value chain actors in eastern Ethiopia. Int J Food Contam. 2:10.
  • Guimaraes PM, Guimaraes LA, Morgante CV, Silva Jr OB, Araujo ACG, Martins ACQ, Saraiva MAP, Oliveira TN, Togawa RC, Leal-Bertoli SCM, et al. 2015. Root transcriptome analysis of wild peanut reveals candidate genes for nematode resistance. PLoSONE. 10:e0140937. doi:10.1371/journal.pone.0140937.
  • Gulluoglu L, Basal H, Onat B, Kurt C, Arioglu H. 2016. The effect of harvesting on some agronomic and quality characteristics of peanut grown in the Mediterranean region of Turkey. Field Crops Res. 21:224–232. doi: 10.17557/tjfc.20186.
  • Gunasekaran A, Pavadai P. 2015. Studies on induced physical and chemical mutagenesis in groundnut (Arachis hypogia). Int Lett Nat Sci. 8:25–35.
  • Guo BZ, Chen X, Dang P, Scully BT, Liang X, Holbrook CC, Yu J, Culbreath AK. 2008. Peanut gene expression profiling in developing seeds at different reproduction stages during Aspergillus parasiticus infection. BMC Dev. Biol. 8:12.
  • Guo Y, Khanal S, Tang S, Bowers JE, Heesacker AF, Khalilian N, Nagy ED, Zhang D, Taylor CA, Stalker HT, et al. 2012. Comparative mapping in intraspecific populations uncovers a high degree of macrosynteny between A-and B-genome diploid species of peanut. BMC Genomics 13: 608. doi:10.1186/1471-2164-13-608.
  • Habtamu A. 2016. Review paper on mutation breeding as applied in groundnut (Arachis hypogeae L. Improv Gene Cell Therapy. 1:35–40.
  • HajHussein O, Assar AHB, Fraah ADM, Al Sir A. 2018. Variability heritability and genetic advance of some groundnut genotypes (Arachis hypogaea L.) under saline sodic soil. Ann Rev Res. 1:1–5.
  • Hampannavar MR, Khan H, Temburne BV, Janila P, Amaregouda A. 2018. Genetic variability, correlation and path analysis studies for yield and yield attributes in groundnut (Arachis hypogaea L. J Pharm Phytochem. 7:870–874.
  • He G, Meng R, Newman M, Gao G, Pittman RN, Prakash CS. 2003. Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L. BMC Plant Biol. 3:3. doi:10.1186/1471-2229-3-3.
  • Hernández-Espinosa N, Mondal S, Autrique E, Gonzalez-Santoyo H, Cross J, Huerta-Espino J, Singh RP, Guzmán C. 2018. Milling, processing and end-use quality traits of CIMMYT spring bread wheat germplasm under drought and heat stress. Field Crops Res. 215:104–112. doi: 10.1016/j.fcr.2017.10.003
  • Herselman L, Thwaites R, Kimmins FM, Courtois B, van der Merwe PJ, Seal SE. 2004. Identification and mapping of AFLP markers linked to peanut (Arachis hypogaea L.) resistance to the aphid vector of groundnut rosette disease. Theor Appl Genet. 109:1426–1433. doi:10.1007/s00122-004-1756-z.
  • Holbrook CC, Dong W, Timper P, Culbreath AK, Kvien CK. 2012. Registration of peanut germplasm line TifGP-2, a nematode-susceptible sister line of ‘tifguard’. J Plant Reg. 6:208–211. doi: 10.3198/jpr2011.09.0507crg
  • Holbrook CC, Ozias-Akins P, Chu Y, Gou B. 2011. Impact of molecular genetic research on peanut cultivar development. Agronomy. 1:3–17. doi:10.3390/agronomy1010003.
  • Holbrook CC, Timper P, Culbreath AK, Kvien CK. 2008. Registration of ‘tifguard’ peanut. J Plant Reg. 2:92–94. doi: 10.3198/jpr2007.12.0662crc.
  • Husain F, Mallikarjuna N. 2012. Genetic diversity in Bolivian landrace lines of groundnut (Arachis hypogaea L. Ind J Genet Plant Breed. 72:384–389.
  • ICRISAT. 2012. Drought-tolerant groundnuts.
  • ICRISAT. 2017. Food industry looks forward to commercialization of high-oleic groundnut varieties in India. Happening Newsletter, March No.1739.
  • Jaiswal JK, Levini LA, Dakora FD. 2017. Phylogenetically diverse group of native bacterial symbionts isolated from root nodules of groundnut (Arachis hypogaea L.) in South Africa. Syst Appl Microbiol. 40:215–226. doi: 10.1016/j.syapm.2017.02.002
  • Janila P, Nigam SN, Pandey MK, Nagesh P, Varshney RK. 2013. Groundnut improvement: use of genetic and genomic tools. Front Plant Sci. 4:1–16. doi: 10.3389/fpls.2013.00023
  • Janila P, Variath MT, Pandey MK, Desmae H, Motagi BN, Okori P, Manohar SS, Rathnakumar AL, Radhakrishnan T, Boshou Liao B, et al. 2016. Genomic tools in groundnut breeding program: status and perspectives. Front Plant Sci. doi:10.3389/fpls.2016.00289.
  • Jaradat AA. 2016. Breeding oilseed crops for climate change. opportunities and constraints. In: Gupta SK, editor. Breeding oilseed crops for sustainable production. London: Academic Press; p. 421–472.
  • Jiang GA. 2013. Molecular markers and marker-assisted breeding in plants. In: Andersen SB, editor. Plant breeding from laboratories to fields. InTechOpen, p. 46–80. doi:10.5772/3362.
  • Johnson HW, Rodinson HF, Cronstrock RE. 1955. Estimation of genetic and environmental variability in soybeans. Agronomy J. 47:314–318. doi: 10.2134/agronj1955.00021962004700070009x
  • Kale DM, Murty GSS, Badigannavar AM. 2004. Tg 37A – A new Trombay, groundnut variety with wide adaptation. Int Arachis Newsletter. 24:19–20.
  • Kamburova VS, Nikitina EV, Shermatov SE, Buriev Z, Kumpatla S, Emani C, Abdurakhmonov I. 2017. Genome editing in plants: an overview of tools and applications. Hindawi Int J Agron. doi:10.1155/2017/7315351.
  • Kamika I, Takoy LL. 2011. Natural occurrence of aflatoxin B1 in peanut collected from Kinshasa, democratic Republic of Congo. Food Contam. 22:1760–1764. doi: 10.1016/j.foodcont.2011.04.010
  • Kanyika BTN, Davies D, Mweetwa AM, Kaimoyo E, Njung'e VM, Monyo ES, Siambi M, He G, Prakash CS, Zhao Y, et al. 2015. Identification of groundnut (Arachis hypogaea) SSR markers suitable for multiple resistance traits QTL mapping in African germplasm. Electr J Biotechnol. 18:61–67. doi: 10.1016/j.ejbt.2014.10.004
  • Kebede A, Abady S, Endale E, Abdulahi J, Getahun A, Aliyi Robsa A, Yohanese Petros Y. 2017. Registration of ‘babile-1’, ‘babile-2’, and ‘babile-3’ groundnut varieties. East Afr J Sci. 11:59–64.
  • Kebede BA, Getahun A. 2017. Adaptability and stability analysis of groundnut genotypes using AMMI model and GGE-biplot. J Crop Sci Biotechnol. 20:343–349. doi:10.1007/s12892 doi: 10.1007/s12892-017-0061-0
  • Knoll JE, Ramos ML, Zeng Y, Holbrook CC, Chow M, Chen S, Maleki S, Bhattacharya A, Ozias-Akins P. 2011. Tilling for allergen reduction and improvement of quality traits in peanut (Arachis hypogaea L.). BMC Plant Biol. 11:81.
  • Kulthe MH, Kothekar VS. 2011. Effects of sodium azide on yield parameters of chickpea (Cicer arietinum L.). J Phytol. 3:39–42.
  • Kumari V. 2008. Morphological and molecular characterization of induced mutants in groundnut [MSc dissertation], University of Agricultural Sciences, Darwat, India.
  • Kumari V, Gowda MVC, Tasiwal V, Pandey MK, Bhat RS, Mallikarjuna N, Upadhyaya HD, Rajeev K, Varshney RK. 2014. Diversification of primary gene pool through introgression of resistance to foliar diseases from synthetic amphidiploids to cultivated groundnut (Arachis hypogaea L.). Crop J. 2:110–119. doi: 10.1016/j.cj.2014.03.002
  • Kumpatla SP, Buyyarapu R, Abdurakhmonov IY, Mammadov JA. 2012. Genomics-assisted plant breeding in the 21st Century. In: Abdurakhmonov I, editor. Technological advances and progress. InTech; p. 132–184.
  • Kushwah A, Gupta S, Sharma SR, Pradhan K. 2017. Genetic variability, correlation coefficient and path coefficient analysis for yield and component traits in groundnut. Ind J Ecol. 44:85–89.
  • Liang Y, Baring M, Wang S, Septiningsih EM. 2017. Mapping QTLs for leaf spot resistance in peanut using snp-based next-generation sequencing markers. Plant Breed Biotechnol. 5:115–122. doi:10.9787/PBB.2017.5.2.115.
  • Lopes MS, El-Basyoni I, Baenziger PS, Singh S, Royo C, Ozbek K, Aktas H, Ozer E, Ozdemir F, Manickavelu A, et al. 2015. Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. J Exp Bot. 66:3477–3486. doi:10.1093/jxb/erv122.
  • Luis JM, Ozias-Akins P, Holbrook CC, Kemerait RC, SniderJr.JL, Liakos V. 2016. Phenotyping peanut genotypes for drought tolerance. Peanut Sci. 43:36–48. doi: 10.3146/0095-3679-43.1.36
  • Mace ES, Phong DT, Upadhyayaet HD, Chandra S, Crouch JH. 2006. SSR analysis of cultivated groundnut (Arachis hypogaea L.) germplasm resistant to rust and late leaf spot diseases. Euphytica. 152:317–330. doi:10.1007/s10681-006-9218-0.
  • Magamba K, Matumba L, Matita G, Gama AP, Singano L, Monjerezi M, Njoroge SM. 2017. Aflatoxin risk management in commercial groundnut products in Malawi (Sub-Saharan Africa): a call for a more socially responsible industry. J Consum Prot Food Saf. 12:309–316. doi: 10.1007/s00003-017-1129-6
  • Mallikarjuna N, Senthilvel S, Hoisington D. 2011. Development of new sources of tetraploid Arachis to broaden the genetic base of cultivated groundnut (Arachis hypogaea L.). Genet Resour Crop Evol. 58: 889. doi:10.1007/s10722-010-9627-8.
  • Maluszynski M. 2001. Officially released mutant varieties – The FAO/IAEA database. Plant Cell Tiss Organ Cult. 65:175–177. doi: 10.1023/A:1010652523463
  • Martinez JF, Gimenez JD, Jimenez A, Hernandez L. 1986. . Use of the single seed descent method in breeding safflower (Carthamus tinctorius L.). Plant Breed. 97:364–367. doi: 10.1111/j.1439-0523.1986.tb01079.x
  • Mastewal A, Sakhuja PK, Mashilla D. 2017. Evaluation of released and local groundnut varieties against groundnut rust (Puccinia arachidis) at Babile, Eastern Ethiopia. Open Acc J Agric Res. 2:000123.
  • Mehta R, Radhakrishnan T, Kumar A, Yadav R, Dobaria JR, Thirumalaisamy PP, Jain RK, Chigurupati P. 2013. Coat protein-mediated transgenic resistance of peanut (Arachis hypogaea L.) to peanut stem necrosis disease through Agrobacterium-mediated genetic transformation. Ind J Virol. 24:205–213. doi:10.1007/s13337-013-0157-9.
  • Mhlaba ZB, Shimelis HA, Amelework B, Modi AT, Mashilo J. 2018. Variance components and heritability of yield and yield-related traits in tepary bean (Phaseolus acutifolius). S Afr J Plant Soil. doi:10.1080/02571862.2018.1487593.
  • Michelotto MD, de Godoy IJ, dos Santos JF, Martins ALM, Leonardecz E, Favero AP. 2016. Identifying Arachis amphidiploids resistant to foliar fungal diseases. Crop Sci 56:1792–1798. doi: 10.2135/cropsci2015.06.0393
  • Michelotto MD, de Godoy IJ, Pirotta MZ, dos Santos JF, Finoto EL, Favero AP. 2017. Resistance to thrips (Enneothrips flavens) in wild and amphidiploid Arachis species. PLoS ONE. 12:e0176811. doi: 10.1371/journal.pone.0176811
  • Mienie CMS, Pretorius AE. 2013. Application of marker-assisted selection for ahFAD2A and ahFAD2B genes governing the high-oleic acid trait in South African groundnut cultivars (Arachis hypogaea L.). Afr J Biotechnol. 12:4283–4289. doi: 10.5897/AJB2012.2976
  • Minde I, Madzonga O, Kantithi G, Phiri K, Pedzisa T. 2008. Constraints, challenges, and opportunities in groundnut production and marketing in Malawi. Report No. 4.
  • Mishra R, Zhao K. 2018. Genome editing technologies and their applications in crop improvement. Plant Biotechnol Rep. 12:57–68. doi:10.1007/s11816-018-0472-0.
  • Mondal S, Badigannavar AM. 2013. A narrow leaf groundnut mutant, TMV2-NLM has a G to A mutation in AhFAD2A gene for high oleate trait. Ind J Genet. 73:105–109. doi:10.5958/j.0019-5200.73.1.016.
  • Mondal S, Badigannavar AM, D’Souza SF. 2012. Development of genic molecular markers linked to a rust resistance gene in cultivated groundnut (Arachis hypogaea L.). Euphytica. 188:163–173. doi:10.1007/s10681-011-0619-3.
  • Mondal S, Badigannavar AM, Kale DM, Murty GSS. 2007. Induction of genetic variability in a disease resistant groundnut breeding line. Newsletter, Founders day special issue 285.
  • Mondal S, Hande P, Badigannavar AM. 2014. Identification of transposable element markers for a rust (Puccinia arachidis Speg.) resistance gene in cultivated peanut. J Phytopathol. 162:548–552. doi:10.1111/jph.12220.
  • Monyo ES, Njoroge SMC, Coe R, Osiru M, Madinda F, Waliyar F, Thakur RP, Chilunjika T, Anitha S. 2012. Occurrence and distribution of aflatoxin contamination in groundnuts (Arachis hypogaea L) and population density of Aflatoxigenic aspergilli in Malawi. Crop Protec. 42:149–155. doi: 10.1016/j.cropro.2012.07.004
  • Monyo ES, Varshney RK. 2016. Seven seasons of learning and engaging smallholder farmers in the drought-prone areas of sub-Saharan Africa and South Asia through Tropical Legumes, 2007–2014. ICRISAT, Patancheru.
  • Motagi BN, Vabi MB, Ajeigbe HA, Echekwu CA, Mohammed SG. 2016. Designing effective groundnut breeding strategies through farmers-breeder interactions in Northern Nigeria. 2nd International Conference on Drylands (12th – 16th December 2016). ICRISAT, Patancheru, India; p. 248–249.
  • Mothilal A (2012) Groundnut. In: Gupta S, editor. Technological innovations in major world oil crops, Volume 1. New York (NY): Springer. doi:10.1007/978-1-4614-0356-2_13.
  • Muitia A. 2011. Farmer perceptions and genetic studies of rosette disease in groundnut (Arachis hypogaea L.) in northern Mozambique [PhD thesis], University of KwaZulu-Natal, South Africa.
  • Nadaf HL, Kaveri SB, Madhusudan K, Motagi BN. 2009. Induced genetic variability for yield and yield components in peanut (Arachis hypogaea L.). In: Shu QY, editor. Induced plant Mutations in the Genomics Era. Rome: Food and Agriculture Organization of the United Nations (FAO); p. 346–348.
  • Naeem-UD-Din AM, Gul SSK, Iqbal S, Muhammad FH. 2009. High yielding groundnut (Arachis hypogea L.) variety “golden”. Pak J Bot. 41:2217–2222.
  • Nagy ED, Chu Y, Guo Y, Khanal S, Tang S, Li Y, Dong WB, Timper P, Taylor C, Ozias-Akins P, et al. 2010. Recombination is suppressed in an alien introgression in peanut harboring Rma, a dominant root-knot nematode resistance gene. Mol Breed. 26:357–370. doi: 10.1007/s11032-010-9430-4
  • Nakashima K, Kanamori N, Nagatoshi Y, Fujita Y, Takasaki H, Urano K, Mogami J, Mizoi J, Mertz-Henning LM, Neumaier N, et al. 2018. Application of biotechnology to generate drought-tolerant soybean plants in Brazil: development of genetic engineering technology of crops with stress tolerance against degradation of global environment. In: Kokubun M, Asanuma S, editors. Crop production under stressful conditions. Singapore: Springer. doi:10.1007/978-981-10-7308-3_7.
  • Nath UK, Alam MS. 2002. Genetic variability, heritability and genetic advance of yield and related traits of groundnut (Arachis hypogaea L.). J Biol Sci. 2:762–764. doi: 10.3923/jbs.2002.762.764
  • Ndjeunga J, Ntare BR, Abdoulaye A, Ibro A, Zarafi MA, Cisse Y, Moutari A, Kodio O, Echekwu CA, Mohammed SG, et al. 2010. Farmer preferences for groundnut traits and varieties in West Africa: Cases of Mali, Niger and Nigeria. Working paper Series no. 27. Working paper. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Andhra Pradesh, India.
  • Ngirazi NS, Manjeru P, Ncube B. 2017. Assessment of genotype x environment interaction and pod yield evaluation of groundnut (Arachis hypogaea L.) genotypes in Zimbabwe. Afr J Plant Sci. 11:54–60. doi: 10.5897/AJPS2017.1517
  • Njoroge SMC, Matumba L, Kanenga K, Siambi M, Waliyar F, Maruwo J, Machinjiri N, Monyo ES. 2017. Aflatoxin B1 levels in groundnut products from local markets in Zambia. Mycotoxin Res. 33:113. doi: 10.1007/s12550-017-0270-5
  • Ntare BR, Ndjeunga J, Waliyar F, Kodio O, Echekwu CA, Kapran I, Da Sylva A, Diallo AT, Amadou A, Bissala HY, et al. 2007. Farmer participatory evaluation and dissemination of improved groundnut varieties in West Africa. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). p. 36.
  • Obisesan IO. 1992. Evaluation of pedigree and single seed descent selection methods for cultivar development in cowpea (Vigna unguiculata L. Walp). Plant Breed. 108:162–168. doi: 10.1111/j.1439-0523.1992.tb00115.x
  • Okello DK, Biruma M, Deom CM. 2010. Overview of groundnuts research in Uganda: past, present and future. Afr J Biotechnol. 9:6448–6459.
  • Okello DK, Deom CM, Puppala N, Monyo E, Bravo-Ureta B. 2016. Registration of ‘serenut 5R’ groundnut. J Plant Reg. 10:115–118. doi: 10.3198/jpr2015.07.0041crc
  • Okello DK, Deom CM, Puppala N, Monyo E, Bravo-Ureta B. 2018. Registration of ‘serenut 6T’ groundnut. J Plant Reg. 12:43–47. doi: 10.3198/jpr2017.03.0016crc
  • Ortiz R, Trethowan R, Ferrara GO, Iwanaga M, Dodds JH, Crouch JH, Crossa J, Braun HJ. 2007. High yield potential, shuttle breeding, genetic diversity, and a new international wheat improvement strategy. Euphytica. 157:365–384. doi:10.1007/s10681-007-9375-9.
  • Oteng-Frimpong R, Sriswathi M, Ntare BR, Dakora FD. 2015. Assessing the genetic diversity of 48 groundnut (Arachis hypogaea L.) genotypes in the Guinea savanna agro-ecology of Ghana, using microsatellite-based markers. Afr J Biotechnol. 14:2484–2493. doi: 10.5897/AJB2015.14770.
  • Pandey MK, Monyo E, Ozias-Akins P, Liang X, Guimarães P, Nigam SN, Upadhyaya HD, Janila P, Zhang X, Guo B, et al. 2012. Advances in Arachis genomics for peanut improvement. Biotechnol Adv. 30:639–651. doi: 10.1016/j.biotechadv.2011.11.001.
  • Partridge-Telenko DE, Hu J, Livingstone DM, Shew BB, Phipps PM, Grabau EA. 2011. Sclerotinia blight resistance in Virginia-type peanut transformed with a barley oxalate oxidase gene. Phytopathol. 101:786–793. doi: 10.1094/PHYTO-10-10-0266
  • Patrick A, Pelham S, Culbreath A, Holbrook CC, de Godoy IJ, Li C. 2017. High throughput phenotyping of tomato spot wilt disease in peanuts using unmanned aerial systems and multispectral imaging. IEEE Instr Measur Mag. 20:4–12. doi: 10.1109/MIM.2017.7951684
  • Puppala N, Tallury SP. 2014. Registration of ‘NuMex 01’ high oleic Valencia peanut. J Plant Reg. 8:127–130. doi:10.3198/jpr2013.11.0070crc.
  • Qin H, Gu Q, Kuppu S, Sun L, Zhu X, Mishra N, Hu R, Shen G, Zhang J, Zhang Y, et al. 2013. Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene AVP1 in peanut to improve drought and salt tolerance. Plant Biotechnol Rep. 7:345–355. doi: 10.1007/s11816-012-0269-5
  • Rashid JA, Alam MS, Moniruzzaman M, Salim M, Azad MAK, Nat UK. 2012. Genetic study of groundnut (Arachis hypogaea L.) mutants for their yield attributes and oil content. Bangl J Progr Sci Technol. 10:181–186.
  • Remanandan P. 1996. Landraces of the primitive pigeonpea yield economic benefit and contribute to sustainability. Diversity (Basel). 12:58.
  • Resende MFR, Muzon JP, Acosta JJ, Peter GF, Davis JM, Grattapaglia D, Resende MD, Kirst M. 2012. Accelerating the omestication of trees using genomic selection: accuracy of prediction models across ages and environments. New Phytol. 193:617–624. doi:10.1111/j.1469-8137.2011.03895.x.
  • Rohini VK, Rao KS. 2001. Transformation of peanut (Arachis hypogaea L.) with tobacco chitinase gene: variable response of transformants to leaf spot disease. Plant Sci. 160:889–898. doi:10.1016/S0168-9452(00)00462-3.
  • Sánchez PAG, Mesa HJ, Montoya MM. 2016. Next generation sequence analysis of the forage peanut (Arachis pintoi) virome. Revista Facultad Nacional de Agronomía. doi:10.15446/rfna.v69n2.59133.
  • Sanchez-Dominguez S, Williams DE. 1993. Results of a recent plant exploration in Mexico to collect the hirsuta peanut. Proc Amer Peanut Res Educ Soc. 25:35. (abstr.).
  • Saxena K, Saxena RK, Varshney RK. 2017. Use of immature seed germination and single seed descent for rapid genetic gains in pigeonpea. Plant Breed. 136:954–957. doi: 10.1111/pbr.12538
  • Setimela P, Prasanna BM, Worku M, Okori P. 2017. Variety release and registration of public bred varieties and land races. SADC Technical Meeting 13-17 November 2017. CIMMYT, Mexico.
  • Shakoor N, Lee S, Mockler TC. 2017. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Curr Opinion Plant Biol. 38:184–192. doi: 10.1016/j.pbi.2017.05.006
  • Sharma B. 1996. Other pulses. In: Paroda RS, Chadha KL, editor. 50 years of crop science research in India. New Delhi: Indian Council of Agricultural Research; p. 297–317.
  • Sharma K, Anjaiah V. 2000. An efficient method for the production of transgenic plants of peanut (Arachis hypogaea L.) through agrobacterium tumefaciens-mediated genetic transformation. Plant Sci. 159:7–19. doi:10.1016/S0168-9452(00)00294-6.
  • Sharma NH, Bisen P, Dhakar TR, Bhumica Singh B, Jain S. 2017a. Diversity Assessment among groundnut (Arachis hypogaea L.) genotypes using RAPD markers. Ind J Ecol. 44:838–842.
  • Sharma S, Pandey MK, Sudini HK, Upadhyaya HD, Varshney RK. 2017b. Harnessing genetic diversity of wild Arachis species for genetic enhancement of cultivated peanut. Crop Sci. 57:1121–1131. doi:10.2135/cropsci2016.10.0871.
  • Shasidhar Y, Vishwakarma MK, Pandey MK, Janila P, Variath MT, Manohar SS, Nigam SN, Guo B, Varshney RK. 2017. Molecular mapping of oil content and fatty acids using dense genetic maps in groundnut (Arachis hypogaea L.). Front Plant Sci. 8:794. doi:10.3389/ doi: 10.3389/fpls.2017.00794
  • Shilpa K, Sunkad G, Kurella S, Marri S, Padmashree K, Jadhav DR, Sahrawat KL, Mallikarjuna N. 2013. Biochemical composition and disease resistance in newly synthesized amphidiploid and autotetraploid peanuts. Food Nutr Sci. 4:169–176. doi:10.4236/fns.2013.42024.
  • Shoba D, Manivannan N, Vindhiyavarman P, Nigam SN. 2012. Ssr markers associated for late leaf spot disease resistance by bulked segregant analysis in groundnut (Arachis hypogaea L.). Euphytica. 188:265–272. doi:10.1007/s10681-012-0718-9.
  • Simpson CE, Starr JL, Baring MR, Burow MD, Cason JM, Wilson JN. 2013. Registration of ‘webb’ peanut. J. Plant. Reg. 7:265–268. doi: 10.3198/jpr2013.01.0005crc
  • Simpson CM, Star JL, Church GT, Burrow MD, Paterson AH. 2003. Registration of NemaTAM peanut. (Registrations of cultivar). Crop Sci. 43:1561. doi: 10.2135/cropsci2003.1561
  • Singh AK. 1986. Utilization of wild relatives in the genetic improvement of Arachis hypogaea L. 8. Synthetic amphidiploids and their importance in interspecific breeding. Theor Appl Genet. 72:433–439. doi: 10.1007/BF00289523
  • Singh AK, Nigam SN. 2016. Arachis gene pools and genetic improvement in groundnut. In: Rajpal VR, Rao S, Raina S, editors. Gene pool diversity and crop improvement, sustainable development and biodiversity, Volume 10. Springer International Publishing Switzerland. doi:10.1007/978-3-319-27096-8.
  • Sorrells ME. 2015. Genomic selection in plants: empirical results and implications for wheat breeding. In: Ogihara Y, Takumi S, Handa H, editors. Advances in wheat genetics: from genome to field. Tokyo: Springer. doi:10.1007/978-4-431-55675-6_45.
  • Stalker HT, Mozingo LG. 2001. Molecular markers of Arachis and marker-assisted selection. Peanut Sci. 28:117–123. doi: 10.3146/i0095-3679-28-2-13
  • Sui J, Wang Y, Wang P, Qiao L, Sun S, Hu X, Chen J, Wang J. 2015. Generation of peanut drought tolerant plants by Pingyangmycin-mediated in vitro mutagenesis and hydroxyproline-resistance screening. PLoSONE. 10:e0119240. doi:10.1371/ journal.pone.0119240 doi: 10.1371/journal.pone.0119240
  • Sun C, van Raden PM, Cole JB, O'Connell JR. 2014. Improvement of prediction ability for genomic selection of dairy cattle by including dominance effects. PLoSONE. 9:e103934. doi:10.1371/journal.pone.0103934.
  • Sundaram J, Kandala CV, Holser RA, Butts CL, Windham WR. 2010. Determination of in-shell peanut oil and fatty acid composition Using Near-Infrared Reflectance Spectroscopy. J Am Oil Chem Soc. 87:1103–1114 doi: 10.1007/s11746-010-1589-7
  • Tallury SP, Isleib TG, Copeland SC, Rosas-Anderson P, Balota M, Singh D, Stalker HT. 2014. Registration of two multiple disease-resistant peanut germplasm lines derived from Arachis cardenasii Krapov. & W.C. Gregory, GKP 10017. J Plant Reg. 8:86–89. doi: 10.3198/jpr2013.04.0017crg
  • Tanaka J, Hayashi T, Iwata H. 2016. A practical, rapid generation-advancement system for rice breeding using simplified biotron breeding system. Breeding Sci. 66:542–551. doi: 10.1270/jsbbs.15038
  • Teerawat S, Charassri N. 2010. The efficiency of pedigree and single seed descent selections for yield improvement at generation 4 (F4) of two yardlong bean populations. Kasetsart J. (Natural Science. 44:343–352.
  • Tiwari S, Tripathi MK, Kumar N, Tomar RS, Joshi E, Tiwari R, Gupta R, Singh AK. 2017. Improvement of groundnut for fatty acids using marker assisted breeding approaches. Int J Pure Appl Biosci. 5:59–63. doi:10.18782/2320-7051.5952.
  • Upadhyaya HD, Bramel PJ, Ortiz R, Singh S. 2002. Developing a mini core of peanut for utilization of genetic resources. Crop Sci. 42:2150–2156. doi: 10.2135/cropsci2002.2150
  • Upadhyaya HD, Dwivedi SL, Vadez V, Hamidou F, Singh S, Varshney RK, Liao B. 2014. Multiple resistant and nutritionally dense germplasm identified from mini core collection in peanut. Crop Sci. 54:679–693. doi: 10.2135/cropsci2013.07.0493
  • Upadhyaya HD, Ferguson ME, Bramel PJ. 2001a. Status of the Arachis germplasm collection at ICRISAT. Peanut Sci. 28:89–96. doi: 10.3146/i0095-3679-28-2-10
  • Upadhyayaa HD, Mallikarjuna Swamyb BP, Kenchana Goudarb PV, Kullaiswamy BY, Singha S. 2005. Identification of diverse groundnut germplasm through multie-nvironment evaluation of a core collection for Asia. Field Crops Res. 93:293–299. doi: 10.1016/j.fcr.2004.10.007
  • Upadhyaya HD, Nigam SN, Mehan VK, Reddy AGS, Yellaiah N. 2001b. Registration of Aspergillus flavus seed infection resistant peanut germplasm ICGV 91278, ICGV 91283, and ICGV 91284 Registration by CSSA. Crop Sci 41:599–600. doi: 10.2135/cropsci2001.412599x
  • Van de Wiel CCM, Schaart JG, Lotz LAP, Smulders MJM. 2017. New traits in crops produced by genome editing techniques based on deletions. Plant Biotechnol Rep. 11:1–8. doi:10.1007/s11816-017-0425-z.
  • Variath MT, Janila P. 2017. Economic and Academic Importance of peanut. In: Varshney R, Pandey M, Puppala N, Editors. The peanut genome. Compendium of plant genomes. Cham: Springer. doi:10.1007/978-3-319-63935-2_2.
  • Varshney RK, Bertioli DJ, Moretzsohn MC, Vadez V, Krishnamurthy L, Aruna R, Nigam SN, Moss BJ, Seetha K, Ravi K, et al. 2009. The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor Appl Genet. 118:729–39. doi:10.1007/s00122-008-0933-x.
  • Varshney RK, Gowda MVC, Radhakrishnan T, Pandey MK, Gautami B, Sujay V, Koppolu R, Senthilvel S, Vadez V, Nigam SN, et al. 2010. Development and application of genomic resources for molecular breeding in groundnut (Arachis hypogaea L). Proc: The 3rd International Conference on plant molecular breeding (ICPMB), 5–9th September. Beijing, China.
  • Varshney RK, Mohan SM, Gaur PM, Gangarao NVPR, Pandey MK, Bohra A, Sawargaonkar SL, Chitikineni A, Kimurto PK, Janila P, et al. 2013. Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnol Adv. 31:1120–1134. doi: 10.1016/j.biotechadv.2013.01.001
  • Varshney RK, Pandey MK, Janila P, Nigam SN, Sudini H, Gowda MCV, Sriswathi M, Radhakrishnan T, Manohar SS, Nagesh P. 2014. Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.). Theor Appl Genet. 127:1771–1781. doi:10.1007/s00122-014-2338-3.
  • Waliyar F, Hassan H, Bonkoungou S. 1994. Sources of resistance to Aspergillus flavus and aflatoxin contamination in groundnut genotypes in West Africa. Plant Dis. 78:704–708. doi: 10.1094/PD-78-0704
  • Waliyar F, Kumar KVK, Diallo M, Traore A, Mangala UN, Upadhyaya HD, Sudini H. 2016. Resistance to pre-harvest aflatoxin contamination in ICRISAT’s groundnut mini core collection. Eur J Plant Pathol. 145:901–913. doi: 10.1007/s10658-016-0879-9
  • Wang H, Lei Y, Yan L, Wan L, Cai Y, Yang Z, Lv J, Zhang X, Xu C, Liao B. 2018. Development and validation of simple sequence repeat markers from Arachis hypogaea transcript sequences. Crop J. 6:172–180. doi:10.1016/j.cj.2017.09.007.
  • Wells WC, Weiser GC. 1989. Additive genetic variance within populations derived by single-seed descent and pod-bulk descent. Theor Appl Genet. 78:365–368. doi:10.1007/s10681-007-9375-9 doi: 10.1007/BF00265298
  • Wu L, Chen J, Shi Y, Miao H, Hu W, Qi W, Chen X. 2006. Breeding of Huayu 22 by 60Co γ-rays mutagenesis combined with hybridization. Acta Agric Nucl Sinica. 20:309–311.
  • Yang H, Nairn J, Ozias-Akins P. 2003. Transformation of peanut using a modified bacterial mercuric ion reductase gene driven by an actin promoter from Arabidopsis thaliana. J Plant Physiol. 160:945–952. doi: 10.1078/0176-1617-01087
  • Yin D, Wang Y, Zhang X, Ma X, He X, Zhang J. 2017. Development of chloroplast genome resources for peanut (Arachis hypogaea L.) and other species of Arachis. Sci Rep. 7:11649. doi:10.1038/s41598-017-12026-x.
  • Yusuf Z, Zeleke H, Mohammed W, Hussein S, Hugo A. 2017. Genetic progress for yield, yield components and other agronomic characters of groundnut (Arachis Hypogea L.) cultivars in eastern Ethiopia. Int J Plant Breed Crop Sci. 4:237–242.
  • Zhao Y, Prakash CS, He G. 2012. Characterization and compilation of polymorphic simple sequence repeat (SSR) markers of peanut from public database. MC Res Notes. 5:362. doi: 10.1186/1756-0500-5-362
  • Zhao Y, Zhang C, Chen H, Yuan M, Nipper R, Prakash CS, Zhuang W, He G. 2016. Qtl mapping for bacterial wilt resistance in peanut (Arachis hypogaea L.). Mol Breed. 36:13. doi: 10.1007/s11032-015-0432-0
  • Zongo A, Khera P, Sawadogo M, Shasidhar Y, Sriswathi M, Vishwakarma MK, Sankara P, Ntare BR, Varshney RK, Pandey MK, et al. 2017b. SSR markers associated to early leaf spot disease resistance through selective genotyping and single marker analysis in groundnut (Arachis hypogaea L.). Biotechnol Rep. 15:132–137. doi: 10.1016/j.btre.2017.07.005
  • Zongo A, Nana AT, Sawadogo M, Konate AK, Sankara P, Ntare BR, Desmae H. 2017a. Variability and correlations among groundnut populations for early leaf spot, pod yield, and agronomic traits. Agronomy. 7:52. doi:10.3390/agronomy7030052.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.