624
Views
4
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLES

Screening for pre- and post-anthesis drought responses in selected bread wheat (Triticum aestivum L.) genotypes

, & ORCID Icon
Pages 272-284 | Received 29 Oct 2019, Accepted 06 Jan 2020, Published online: 12 Feb 2020

References

  • Abdolshahi R, Nazari M, Safarian A, Sadathossini TS, Salarpour M, Amiri H. 2015. Integrated selection criteria for drought tolerance in wheat (Triticum aestivum L.) breeding programs using discriminant analysis. Field Crops Res. 174:20–29. doi: 10.1016/j.fcr.2015.01.009
  • Aisawi KAB, Reynolds MP, Singh RP, Foulkes MJ. 2015. The physiological basis of the genetic progress in yield potential of CIMMYT spring wheat cultivars from 1966 to 2009. Crop Sci. 55:1749–1764. doi: 10.2135/cropsci2014.09.0601
  • Alonso MP, Mirabella NE, Panelo JS. 2018. Selection for high spike fertility index increases genetic progress in grain yield and stability in bread wheat. Euphytica. 214:112–125. doi: 10.1007/s10681-018-2193-4
  • Álvaro F, Isidro J, Villegas D, García del Moral LF, Royo C. 2008. Old and modern durum wheat varieties from Italy and Spain differ in main spike components. Field Crops Res 106:86–93. doi: 10.1016/j.fcr.2007.11.003
  • Amani I, Fischer RA, Reynolds MP. 1996. Canopy temperature depression association with yield of irrigated spring wheat cultivars in a hot climate. J Agron Crop Sci. 176:119–129. doi: 10.1111/j.1439-037X.1996.tb00454.x
  • Balota M, Green AJ, Griffey CA, Pitman R, Thomason W. 2017. Genetic gains for physiological traits associated with yield in soft red winter wheat in the Eastern United States from 1919 to 2009. Eur J Agron. 84:76–83. doi: 10.1016/j.eja.2016.11.008
  • Beche E, Benin D, Da Silva CL, Munaro LB, Marchese JA. 2014. Genetic gain in yield and changes associated with physiological traits in Brazilian wheat during the 20th century. Eur J Agron. 61:49–59. doi: 10.1016/j.eja.2014.08.005
  • Bustos DV, Hasan AK, Reynolds MP, Calderini DF. 2013. Combining high grain number and weight through a DH-population to improve grain yield potential of wheat in high-yielding environments. Field Crops Res. 145:106–115. doi: 10.1016/j.fcr.2013.01.015
  • Chairi F, Vergara-Diaz O, Vatter T, Aparicio N, Nieto-Taladriz MT, Kefauver SC, Bort J, Serret MD, Araus JL. 2018. Post-green revolution genetic advance in durum wheat: The case of Spain. Field Crops Res. 228:158–169. doi: 10.1016/j.fcr.2018.09.003
  • Chen X, Min D, Yasir TA, Hu YG. 2012. Evaluation of 14 morphological, yield-related and physiological traits as indicators of drought tolerance in Chinese winter bread wheat revealed by analysis of the membership function value of drought tolerance (MFVD). Field Crops Res. 137:195–201. doi: 10.1016/j.fcr.2012.09.008
  • Chen H, Moakhar NP, Iqbal M, Pozniak C, Hucl P, Spaner D. 2016. Genetic variation for flowering time and height reducing genes and important traits in western Canadian spring wheat. Euphytica. 208:377–390. doi: 10.1007/s10681-015-1615-9
  • Cossani CM, Reynolds MP. 2015. Heat stress adaptation in elite lines derived from synthetic hexaploid wheat. Crop Sci. 55:2719–2735. doi: 10.2135/cropsci2015.02.0092
  • Crespo-Herrera LA, Crossa J, Huerta-Espino J, Vargas M, Mondal S, Velu G, et al. 2018. Genetic gains for grain yield in CIMMYT’s semi-arid wheat yield trials grown in suboptimal environments. Crop Sci. 58:1890–1189. doi: 10.2135/cropsci2018.01.0017
  • Dube E, Kilian W, Mwadzingeni L, Sosibo NZ, Barnard A, Tsilo TJ. 2019. Genetic progress of spring wheat grain yield in various production regions of South Africa. SA J Plant Soil. 36:1, 33–39. doi: 10.1080/02571862.2018.1469793
  • FAOSTAT. 2019. [Accessed 2019 September 18]. http://www.fao.org/faostat/en/#data/QC.
  • Gaju O, Reynolds MP, Sparkes DL, Foulkes MJ. 2009. Relationships between large-spike phenotype, grain number, and yield potential in spring wheat. Crop Sci. 49:961–973. doi: 10.2135/cropsci2008.05.0285
  • Gao F, Ma D, Yin G, Rasheed A, Dong Y, Xiao Y, Xia X, Wu X, He Z. 2017. Genetic progress in grain yield and physiological traits in Chinese wheat cultivars of Southern Yellow and Huai Valley since 1950. Crop Sci. 57:760–773. doi: 10.2135/cropsci2016.05.0362
  • Gummadov N, Keser M, Akin B, Cakmak M, Mert Z, Taner S, Ozturk I, Topal A, Yazar S, Morgounov A. 2015. Genetic gains in wheat in Turkey: winter wheat for irrigated conditions. Crop J. 3:507–516. doi: 10.1016/j.cj.2015.07.007
  • Guzmán C, Autrique E, Mondal S, Huerta-Espino J, Singh RP, Vargas M, Crossa J, Amaya A, Peña RJ. 2017. Genetic improvement of grain quality traits for CIMMYT semi-dwarf spring bread wheat varieties developed during 1965–2015: 50 years of breeding. Field Crops Res. 210:192–196. doi: 10.1016/j.fcr.2017.06.002
  • Guzmán C, Autrique JE, Mondal S, Singh RP, Govindan V, Morales-Dorantes A, Posadas-Romano G, Crossa J, Ammar K, Peña RJ. 2016. Response to drought and heat stress on wheat quality, with special emphasis on bread-making quality, in durum wheat. Field Crops Res. 186:157–165. doi: 10.1016/j.fcr.2015.12.002
  • Hernández-Espinosa N, Mondal S, Autrique E, Gonzalez-Santoyo H, Cross J, Huerta-Espino J, Singh RV, Guzmán C. 2018. Milling, processing and end-use quality traits of CIMMYT spring bread wheat germplasm under drought and heat stress. Field Crops Res. 215:104–112. doi: 10.1016/j.fcr.2017.10.003
  • Keser M, Gummadov N, Akin B, Belen S, Mert Z, Taner S, Topal A, Yazar S, Morgounov A, Sharma RC, Ozdemir F. 2017. Genetic gains in wheat in Turkey: Winter wheat for dryland conditions. Crop J. 5:533–540. doi: 10.1016/j.cj.2017.04.004
  • Li K, Yang X, Liu Z, Zhang T, Lu S, Liu Y. 2014. Low yield gap of winter wheat in the North China Plain. Eur J Agron. 59:1–12. doi: 10.1016/j.eja.2014.04.007
  • Liu C, Yang Z, Hu YG. 2015. Drought resistance of wheat alien chromosome addition lines evaluated by membership function value based on multiple traits and drought resistance index of grain yield. Field Crops Res. 179:103–112. doi: 10.1016/j.fcr.2015.04.016
  • Liu D, Zhang L, Hao M, Ning S, Yuan Z, Dai S, Huang L, Wu B, Yan Z, Lan X, Zheng Y. 2018. Wheat breeding in the hometown of Chinese Spring. Crop J. 6:82–90. doi: 10.1016/j.cj.2017.08.009
  • Liwani U, Magwaza LS, Sithole NJ, Odindo AO, Tsilo TJ. 2018. Physiological responses of irrigated wheat (Triticum aestivum L.) genotypes to water stress. Acta Agric Scand Sect B Soil Plant Sci. 68:524–533.
  • Liwani U, Magwaza LS, Odindo AO, Sithole NJ. 2019. Growth, morphological and yield responses of irrigated wheat (Triticum aestivum L.) genotypes to water stress. Acta Agric Scand Sect B Soil Plant Sci. 69:369–376.
  • Lopes MS, Reynolds MP, Manes Y, Singh RP, Crossa J, Braun HJ. 2012. Genetic yield gains and changes in associated traits of CIMMYT spring bread wheat in a “historic” set representing 30 years of breeding. Crop Sci. 52:1123–1131. doi: 10.2135/cropsci2011.09.0467
  • Matlala M, Shimelis H, Mashilo J. 2019. Genotype-by-environment interaction of grain yield among candidate dryland wheat genotypes. S Afr J Plant Soil. 6:299–306. doi: 10.1080/02571862.2019.1566502
  • Mkhabela SS, Shimelis H, Odindo AO, Mashilo J. 2019. Response of selected drought tolerant wheat (Triticum aestivum L.) genotypes for agronomic traits and biochemical markers under drought-stressed and non-stressed conditions. Acta Agric Scand Sect B Soil Plant Sci. 69(8):674–689.
  • Mondal S, Singh RP, Mason ER, Huerta-Espino J, Autrique E, Joshi AK. 2016. Grain yield, adaptation and progress in breeding for early-maturing and heat-tolerant wheat lines in South Asia. Field Crops Res. 192:78–85. doi: 10.1016/j.fcr.2016.04.017
  • Morgounov A, Zykinb V, Belanb I, Roseevab L, Zelenskiyc Y, Gomez-Becerrad HF, Budakd H, Bekes F. 2010. Genetic gains for grain yield in high latitude spring wheat grown in Western Siberia in 1900–2008. Field Crops Res. 117:101–112. doi: 10.1016/j.fcr.2010.02.001
  • Mwadzingeni L, Shimelis H, Tesfay S, Tsilo TJ. 2016. Screening of bread wheat genotypes for drought tolerance using phenotypic and proline analyses. Front Plant Sci. 7:1–12. doi: 10.3389/fpls.2016.01276
  • Ochagavía H, Prieto P, Savin R, Griffiths S, Slafer G. 2018. Dynamics of leaf and spikelet primordia initiation in wheat as affected by Ppd-1a alleles under field conditions. J Exp Bot. 69:2621–2631. doi: 10.1093/jxb/ery104
  • Olivares-Villegas JJ, Reynolds MP, McDonald GK. 2007. Drought-adaptive attributes in the Seri/Babax hexaploid wheat population. Funct Plant Biol. 34:189–203. doi: 10.1071/FP06148
  • Pinto RS, Molero G, Reynolds MP, Ibrahim A. 2017. Identification of heat tolerant wheat lines showing genetic variation in leaf respiration and other physiological traits. Euphytica. 213:76. doi: 10.1007/s10681-017-1858-8
  • Quintero A, Molero G, Reynolds MP, Calderini DF. 2018. Trade-off between grain weight and grain number in wheat depends on G x E interaction: A case study of an elite CIMMYT panel (CIMCOG). Eur J Agron. 92:17–29. doi: 10.1016/j.eja.2017.09.007
  • Reynolds MP, Pask AJD, Hoppitt WJE, Sonder K, Sukumaran S, Molero G. 2017. Strategic crossing of biomass and harvest index-source and sink-achieves genetic gains in wheat. Euphytica. 213:257. doi: 10.1007/s10681-017-2040-z
  • Sharma RC, Crossa J, Velu G, Huerta-Espino J, Vargas M, Payne TS, Singh RP. 2012. Genetic gains for grain yield in CIMMYT Spring bread wheat across International environments. Crop Sci. 52:1522–1533. doi: 10.2135/cropsci2011.12.0634
  • Thapa S, Jessup KE, Pradhan GP, Rudd JC, Liu S, Mahan JR, Devkota RN, Baker JA, Xue Q. 2018. Canopy temperature depression at grain filling correlates to winter wheat yield in the U.S. Southern high Plains. Field Crops Res. 217:11–19. doi: 10.1016/j.fcr.2017.12.005
  • Thungo Z, Shimelis H, Odindo AO, Mashilo J. 2019. Genotype-by-environment interaction of elite heat and drought tolerant bread wheat (Triticum aestivum L.) genotypes under non-stressed and drought-stressed conditions. Acta Agric Scand Sect B Soil Plant Sci. 69:725–733.
  • Tian Z, Jing Q, Dai T, Jiang D, Cao W. 2011. Effects of genetic improvements on grain yield and agronomic traits of winter wheat in the Yangtze River Basin of China. Field Crops Res. 124:417–425. doi: 10.1016/j.fcr.2011.07.012
  • Wu W, Li C, Ma B. 2014. Genetic progress in wheat yield and associated traits in China since 1945 and future prospects. Euphytica. 196:155–168. doi: 10.1007/s10681-013-1033-9
  • Würschum T, Langer SM, Longin CFH. 2015. Genetic control of plant height in European winter wheat cultivars. Theor Appl Genet. 128:865–874. doi: 10.1007/s00122-015-2476-2
  • Würschum T, Leiser WL, Langer SM. 2018. Phenotypic and genetic analysis of spike and kernel characteristics in wheat reveals long-term genetic trends of grain yield components. Theor Appl Genet. 131:2071–2084. doi: 10.1007/s00122-018-3133-3
  • Yao Y, Lv L, Zhang L, Yao H, Dong Z, Zhang J, Ji J, Jia X, Wang H. 2019. Genetic gains in grain yield and physiological traits of winter wheat in Hebei Province of China, from 1964 to 2007. Field Crops Res. 239:114–123. doi: 10.1016/j.fcr.2019.03.011
  • Yu M, Mao S, Chen G. 2014. QTLs for uppermost internode and spike length in two wheat RIL populations and their affect upon plant height at an individual QTL level. Euphytica. 200:95–108. doi: 10.1007/s10681-014-1156-7
  • Zhang Y, Xu W, Wang W, Dong H, Qi X, Zhao M, Fang Y, Gao Y, Hu L. 2016. Progress in genetic improvement of grain yield and related physiological traits of Chinese wheat in Henan Province. Field Crops Res. 199:117–128. doi: 10.1016/j.fcr.2016.09.022
  • Zheng TC, Zhang XK, Yina GH, Wanga LN, Hana YL, Chen L, et al. 2011. Genetic gains in grain yield, net photosynthesis and stomatal conductance achieved in Henan Province of China between 1981and 2008. Field Crops Res. 122:225–233. doi: 10.1016/j.fcr.2011.03.015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.