1,794
Views
2
CrossRef citations to date
0
Altmetric
Articles

Hardwood biochar as an alternative to reduce peat use for seed germination and growth of Tagetes patula

ORCID Icon, , ORCID Icon, , & ORCID Icon
Pages 408-421 | Received 06 May 2020, Accepted 07 Jan 2021, Published online: 30 Mar 2021

References

  • Altland JE, Buamscha MG. 2008. Nutrient availability from Douglas Fir bark in response to substrate pH. HortScience. 43(2):478–483.
  • Altland JE, Locke JC. 2017. High rates of gasified rice hull biochar affect geranium and tomato growth in a soilless substrate. J Plant Nutr. 40(13):1816–1828.
  • Astover A, Leedu E. 2019. Mulla happesus ja lupjamine. Tartu: Estonian University of Life Sciences. ISBN 978-9949-629-79-4 (print), ISBN 978-9949-629-80-0 (pdf), ISSN 2504-8074.
  • Baronti S, Alberti G, Delle Vedove G, Di Gennaro F, Fellet G, Genesio L, Miglietta F, Peressotti A, Vaccari FP. 2010. The biochar option to improve plant yields: first results from some field and pot experiments in Italy. Ital J Agron. 5(1):27–34.
  • Basso AS. 2012. Effect of fast pyrolysis biochar on physical and chemical properties of a sandy soil. Ames (IA): Iowa State University.
  • Bengough AG. 2003. Root growth and function in relation to soil structure, composition, and strength. In: de Kroon H, Visser EJW, editors. Root ecology. Ecological studies (Analysis and synthesis). Berlin: Springer-Verlag Berlin Heidelberg; p. 151–171.
  • Bigelow CA, Bowman DC, Cassel DK. 2004. Physical properties of three sand size classes amended with inorganic materials or Sphagnum peat moss for putting green rootzones. Crop Sci. 44(3):900–907.
  • Blok C, van der Salm C, Hofland-Zijlstra J, Streminska M, Eveleens B, Regelink I, Fryda L, Visser R. 2017. Biochar for horticultural rooting media improvement: evaluation of biochar from gasification and slow pyrolysis. Agronomy. 7(1).
  • Brunauer S, Emmett PH, Teller E. 1938. Adsorption of gases in multimolecular layers. J Am Chem Soc. 60(2):309–319.
  • Bunt BR. 1988. Media and mixes for container-grown plants. Dordrecht: Springer Netherlands.
  • Carlson WH, Rowley EM. 1980. Bedding plants. In: Larson RA, editor. Introduction to floriculture. Academic Press; p. 477–522.
  • Cheng C-H, Lehmann J, Thies JE, Burton SD, Engelhard MH. 2006. Oxidation of black carbon by biotic and abiotic processes. Org Geochem. 37(11):1477–1488.
  • Chrysargyris A, Prasad M, Kavanagh A, Tzortzakis N. 2019. Biochar type and ratio as a peat additive/partial peat replacement in growing media for cabbage seedling production. Agronomy. 9(11).
  • Conversa G, Bonasia A, Lazzizera C, Elia A. 2015. Influence of biochar, mycorrhizal inoculation, and fertilizer rate on growth and flowering of Pelargonium (Pelargonium zonale L.) plants. Front Plant Sci. 6:429.
  • Demeyer A, Voundi Nkana JC, Verloo MG. 2001. Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresour Technol. 77(3):287–295.
  • Desbiens MC, Bussières P, Caron J, Beeson R, Haydu J, Boudreau J, Elrick D. 2008. Improved water saving in nursery production using Sphagnum peat. Acta Hortic. 779:407–414.
  • Di Lonardo S, Baronti S, Vaccari FP, Albanese L, Battista P, Miglietta F, Bacci L. 2017. Biochar-based nursery substrates: The effect of peat substitution on reduced salinity. Urban For Urban Green. 23:27–34.
  • Dispenza V, De Pasquale C, Fascella G, Mammano MM, Alonzo G. 2016. Use of biochar as peat substitute for growing substrates of euphorbia × lomi potted plants. Span J Agric Res. 14(4).
  • Eissenstat DM. 1992. Costs and benefits of constructing roots of small diameter. J Plant Nutr. 15(6–7):763–782.
  • Eissenstat DM, Yanai RD. 1997. The ecology of root lifespan. Adv Ecol Res. 27(C):1–60.
  • Elkhalifa S, Al-Ansari T, Mackey HR, McKay G. 2019. Food waste to biochars through pyrolysis: A review. Resour Conserv Recycl. 144:310–320.
  • Ferlito F, Torrisi B, Allegra M, Stagno F, Caruso P, Fascella G. 2020. Evaluation of conifer wood biochar as growing media component for citrus nursery. Applied Sciences. 10(5).
  • Fuertes AB, Arbestain MC, Sevilla M, Maciá-Agulló JA, Fiol S, López R, Smernik RJ, Aitkenhead WP, Arce F, Macías F. 2010. Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Soil Research. 48(7):618–626.
  • Gaskin JW, Steiner C, Harris K, Das KC, Bibens B. 2008. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE. 51(6):2061–2069.
  • Gezahegn S, Sain M, Thomas S. 2019. Variation in feedstock wood chemistry strongly influences biochar liming potential. Soil Systems. 3(2.
  • Glaser B, Wiedner K, Seelig S, Schmidt H-P, Gerber H. 2014. Biochar organic fertilizers from natural resources as substitute for mineral fertilizers. Agronomy for Sustainable Development. 35(2):667–678.
  • Government of the United Kingdom. 2018. 25 year environment plan. London: Government of the United Kingdom, Department for Environment, Food & Rural Affairs.
  • Gruda N, Bisbis M, Tanny J. 2019. Impacts of protected vegetable cultivation on climate change and adaptation strategies for cleaner production – a review. J Cleaner Prod. 225:324–339.
  • Hyväluoma J, Hannula M, Arstila K, Wang H, Kulju S, Rasa K. 2018. Effects of pyrolysis temperature on the hydrologically relevant porosity of willow biochar. J Anal Appl Pyrolysis. 134:446–453.
  • Jeffery S, Abalos D, Prodana M, Bastos AC, van Groenigen JW, Hungate BA, Verheijen F. 2017. Biochar boosts tropical but not temperate crop yields. Environ Res Lett. 12:5.
  • Kern J, Tammeorg P, Shanskiy M, Sakrabani R, Knicker H, Kammann C, Tuhkanen E-M, Smidt G, Prasad M, Tiilikkala K, et al. 2017. Synergistic use of peat and charred material in growing media – an option to reduce the pressure on peatlands? Journal of Environmental Engineering and Landscape Management. 25(2):160–174.
  • Kolb E, Hartmann C, Genet P. 2012. Radial force development during root growth measured by photoelasticity. Plant Soil. 360(1-2):19–35.
  • Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X. 2009. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol Biochem. 41(2):210–219.
  • Laasimer L. 1975. Haruldaste taimekoosluste olukord ja kaitse probleemid eestis. In: Kumari E, Hang V, Mäemets A, editor. Eesti loodusharulduste kaitseks. Tallinn, Estonia: Valgus; p. 224.
  • Lehmann J. 2007a. Bio-energy in the black. Front Ecol Environ. 5(7):381–387.
  • Lehmann J. 2007b. A handful of carbon. Nature. 447(7141):143–144.
  • Lehmann J, Joseph S. 2009. Biochar for environmental management: Science and technology. London, United Kingdom: Earthscan.
  • Lehmann J, Joseph S. 2015. Biochar for environmental management: Science and technology (second edition). London: Earthscan.
  • Lehmann J, Pereira da Silva J, Steiner C, Nehls T, Zech W, Glaser B. 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil. 249(2):343–357.
  • LIFE programme. 2015. Reduction of CO2 emissions by restoring degraded Peatlands in Northern European Lowland (LIFE15 CCM/DE/000138). Brussels, Belgium: LIFE peat restore, LIFE programme. European Union.
  • Long J, Song H, Jun X, Sheng S, Lun-Shi S, Kai X, Yao Y. 2012. Release characteristics of alkali and alkaline earth metallic species during biomass pyrolysis and steam gasification process. Bioresour Technol. 116:278–284.
  • Lu S, Zong Y. 2018. Pore structure and environmental serves of biochars derived from different feedstocks and pyrolysis conditions. Environ Sci Pollut Res Int. 25(30):30401–30409.
  • Lucas RE, Davis JF. 1961. Relationships between pH values of organic soils and availabilities of 12 plant nutrients. Soil Sci. 92(3):177–182.
  • Mendiburu FD. 2015. Agricolae: Statistical procedures for agricultural research. R package version 1.2-3. Vienna: The Comprehensive R Archive Network.
  • Nguyen BT, Lehmann J. 2009. Black carbon decomposition under varying water regimes. Org Geochem. 40(8):846–853.
  • Noguera D, Barot S, Laossi KR, Cardoso J, Lavelle P, de Carvalho MH. C. 2012. Biochar but not earthworms enhances rice growth through increased protein turnover. Soil Biol Biochem. 52:13–20.
  • Ogle D, Wheeler P, Dinno A. 2019. FSA. R Package version 0.8.2. Vienna. The Comprehensive R Archive Network.
  • Olmo M, Alburquerque JA, Barrón V, del Campillo MC, Gallardo A, Fuentes M, Villar R. 2014. Wheat growth and yield responses to biochar addition under Mediterranean climate conditions. Biol Fertil Soils. 50(8):1177–1187.
  • Olmo M, Villar R, Salazar P, Alburquerque JA. 2015. Changes in soil nutrient availability explain biochar’s impact on wheat root development. Plant Soil. 399(1-2):333–343.
  • Ok YS, Uchimiya SM, Chang SX, Bolan N. 2015. Biochar: production, characterization, and applications. Boca Raton (FL): CRC Press.
  • Paal J. 1998. Rare and threatened plant communitiesof Estonia. Biodivers Conserv. 7(8):1027–1049.
  • Pandit NR, Mulder J, Hale SE, Martinsen V, Schmidt HP, Cornelissen G. 2018. Biochar improves maize growth by alleviation of nutrient stress in a moderately acidic low-input Nepalese soil. Sci Total Environ. 625:1380–1389.
  • Pettigrew WT. 2008. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant. 133(4):670–681.
  • Prasad M, Tzortzakis N, McDaniel N. 2018. Chemical characterization of biochar and assessment of the nutrient dynamics by means of preliminary plant growth tests. J Environ Manage. 216:89–95.
  • R Core Team. R. 2016. A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
  • Razaq M, Salahuddin SH, Sher H, Zhang P. 2017. Influence of biochar and nitrogen on fine root morphology, physiology, and chemistry of acer mono. Sci Rep. 7(1):5367.
  • Rehrah D, Reddy MR, Novak JM, Bansode RR, Schimmel KA, Yu J, Watts DW, Ahmedna M. 2014. Production and characterization of biochars from agricultural by-products for use in soil quality enhancement. J Anal Appl Pyrolysis. 108:301–309.
  • Rhoades JD, et al. 1996. Salinity: electrical conductivity and total dissolved solids. In: Sparks DL, Page AL, Helmke PA, editor. Methods of soil analysis: part 3 chemical methods. Madison (WI): Soil Science Society of America, Inc; p. 53.
  • Schmilewski G. 2017. Growing media constituents used in the EU in 2013. Acta Hortic. 1168:85–92.
  • Silber A, Bar-Tal A. 2008. Nutrition of substrate-grown plants. In: Raviv M, Lieth JH, editor. Soilless culture theory and practice. Amsterdam: Elsevier Science; p. 291–339.
  • Simpson MG. 2010. Evolution and diversity of green and land plants. In: Simpson MG, editor. Plant systematics. 2nd ed. Cambridge (MA): Academic Press; p. 55–72.
  • Smider B, Singh B. 2014. Agronomic performance of a high ash biochar in two contrasting soils. Agric Ecosyst Environ. 191:99–107.
  • Soil and Plant Analysis Council, Inc. 1992. Handbook on reference methods for soil analysis. Athens: Council on Soil Testing and Plant Analysis, p. 202.
  • Someshwar AV. 1996. Wood and combination wood-fired boiler ash characterization. J Environ Qual. 25(5):962–972.
  • Speratti AB, Johnson MS, Sousa HM, Dalmagro HJ, Couto EG. 2018. Biochars from local agricultural waste residues contribute to soil quality and plant growth in a cerrado region (Brazil) arenosol. GCB Bioenergy. 10(4):272–286.
  • Strack M. 2008. Peatlands and climate change. Jyväskylä, Finland.
  • Tan Z, Lin CSK, Ji X, Rainey TJ. 2017. Returning biochar to fields: A review. Appl Soil Ecol. 116:1–11.
  • Tian Y, Sun X, Li S, Wang H, Wang L, Cao J, Zhang L. 2012. Biochar made from green waste as peat substitute in growth media for calathea rotundifola cv. fasciata. Sci Hortic. 143:15–18.
  • Tripathi P, Lo Leggio L, Mansfeld J, Ulbrich-Hofmann R, Kayastha AM. 2007. Alpha-amylase from mung beans (vigna radiata)–correlation of biochemical properties and tertiary structure by homology modelling. Phytochemistry. 68(12):1623–1631.
  • Tukey JW. 1977. Exploratory data analysis. Reading (MA). Addison-Wesley Publishing Company.
  • Ueno M, Kaeamitsu Y, Komiya Y, Sun L. 2007. Carbonisation and gasification of bagasse for effective utilisation of sugarcane biomass. 26th Congress of the International Society of Sugar Cane Technologists. Réduit, Mauritius: International Society of Sugar Cane Technologists.
  • U.S. Geological Survey. 2020. Mineral commodity summaries 2020.
  • Uzoma KC, Inoue M, Andry H, Zahoor A, Nishihara E. 2011. Influence of biochar application on sandy soil hydraulic properties and nutrient retention. J Food Agric Environ. 9:1137–1143.
  • Vanek SJ, Lehmann J. 2014. Phosphorus availability to beans via interactions between mycorrhizas and biochar. Plant Soil. 395(1-2):105–123.
  • Vassilev SV, Baxter D, Andersen LK, Vassileva CG. 2010. An overview of the chemical composition of biomass. Fuel. 89(5):913–933.
  • Vassilev SV, Baxter D, Andersen LK, Vassileva CG. 2013. An overview of the composition and application of biomass ash. Part 1. Phase–mineral and chemical composition and classification. Fuel. 105:40–76.
  • Vaughn SF, Kenar JA, Eller FJ, Moser BR, Jackson MA, Peterson SC. 2015. Physical and chemical characterization of biochars produced from coppiced wood of thirteen tree species for use in horticultural substrates. Ind Crops Prod. 66:44–51.
  • Videgain-Marco M, Marco-Montori P, Martí-Dalmau C, Jaizme-Vega M, Manyà-Cervelló JJ, García-Ramos FJ. 2020. Effects of biochar application in a sorghum crop under greenhouse conditions: growth parameters and physicochemical fertility. Agronomy. 10(1).
  • Weber K, Quicker P. 2018. Properties of biochar. Fuel. 217:240–261.
  • Werdin J, Fletcher TD, Rayner JP, Williams NSG, Farrell C. 2020. Biochar made from low density wood has greater plant available water than biochar made from high density wood. Sci Total Environ. 705:135856.
  • Xiang Y, Deng Q, Duan H, Guo Y. 2017. Effects of biochar application on root traits: a meta-analysis. GCB Bioenergy. 9(10):1563–1572.
  • Ye L, Camps-Arbestain M, Shen Q, Lehmann J, Singh B, Sabir M, Condron LM. 2019. Biochar effects on crop yields with and without fertilizer: A meta-analysis of field studies using separate controls. Soil Use Manag. 36(1):2–18.
  • Zhang J, You C. 2013. Water holding capacity and absorption properties of wood chars. Energy Fuels. 27(5):2643–2648.
  • Zhu Q, Kong L, Xie F, Zhang H, Wang H, Ao X. 2018. Effects of biochar on seedling root growth of soybeans. Chil J Agric Res. 78(4):549–558.
  • Zulfiqar F, Younis A, Chen J. 2019. Biochar or biochar-compost amendment to a peat-based substrate improves growth of Syngonium podophyllum. Agronomy. 9:8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.