13,148
Views
92
CrossRef citations to date
0
Altmetric
Award Review

Chemical ecology of insect–plant interactions: ecological significance of plant secondary metabolites

Pages 1-13 | Received 30 Oct 2013, Accepted 05 Dec 2013, Published online: 30 Apr 2014

References

  • Schoonhoven LM, Loon JJA, Dicke M. Insect-plant biology. New York (NY): Oxford University Press; 2005.
  • Nishida R. Botyu-Kagaku. Oviposition stimulants of some papilionid butterflies contained in their host plants. 1977;42:133–140.
  • Nishida R, Ohsugi T, Kokubo S, Fukami H. Oviposition stimulants of a citrus-feeding swallowtail butterfly, Papilio xuthus L. Experientia. 1987;43:342–344.
  • Ohsugi T, Nishida R, Fukami H. Oviposition stimulant of Papilio xuthus, a citrus-feeding swallowtail butterfly. Agric. Biol. Chem. 1985;49:1897–1900.
  • Ohsugi T, Nishida R, Fukami H. Multi-component system of oviposition stimulants for a Rutaceae-feeding swallowtail butterfly, Papilio xuthus. Appl. Entomol. Zool. 1991;26:29–40.
  • Honda K. Flavanone glycosides as oviposition stimulants in a papilionid butterfly, Papilio protenor. J. Chem. Ecol. 1986;12:1999–2010.
  • Honda K. Identification of host-plant chemicals stimulating oviposition by swallowtail butterfly, Papilio protenor. J. Chem. Ecol. 1990;16:325–337.
  • Ono H, Nishida R, Kuwahara Y. Oviposition stimulant for a Rutaceae-feeding swallowtail butterfly, Papilio bianor: hydroxycinnamic acid derivative from Orixa japonica. Appl. Entomol. Zool. 2000;35:119–123.
  • Ono H, Nishida R, Kuwahara Y. A dihydroxy-γ-lactone as an oviposition stimulant for a Rutaceae-feeding swallowtail butterfly, Papilio bianor. Biosci. Biotechnol. Biochem. 2000;64:1970–1973.
  • Feeny P, Sachdev K, Rosenberry L, Carter M. Luteolin 7-O-(6"-malonyl)-β-D-glucoside and trans-chlorogenic acid: oviposition stimulants for the black swallowtail butterfly. Phytochemistry. 1988;27:3439–3448.
  • Carter M, Sachdev-Gupta K, Feeny P. Tyramine from the leaves of wild parsnip: a stimulant and synergist for oviposition by the black swallowtail butterfly. Physiol. Entomol. 1998;23:303–312.
  • Feeny P. The evolution of chemical ecology: contributions from the study of herbivorous insects. In: Rosenthal GA, Berenbaum MR, editors. Herbivores: their interactions with secondary plant metabolites. Vol. II, Ecological and evolutionary processes. San Diego (CA): Academic Press; 1992. p. 1–44.
  • Nishida R. Oviposition stimulants of swallowtail butterflies. In: Scriber JM, Tsubaki Y, and Lederhouse RC, editors. Swallowtail butterflies: their ecology and evolutionary biology. Gainesville (FL): Scientific Publishers; 1995. p. 17–26.
  • Nishida R, Fukami H. Oviposition stimulant of an Aristolochiaceae-feeding swallowtail butterfly, Atrophaneura alcinous. J. Chem. Ecol. 1989;15:2565–2575.
  • Papaj D, Feeny P, Sachdev-Gupta K, Rosenberry L. D-(+)-Pinitol: an oviposition stimulant for the pipevine swallowtail butterfly, Battus philenor. J. Chem. Ecol. 1992;18:799–815.
  • Nishida R. Oviposition stimulant of a zerynthiine swallowtail butterfly, Luehdorfia japonica. Phytochemistry. 1994;36:873–877.
  • Ehrlich PR, Raven PH. Butterflies and plants: a study in coevolution. Evolution. 1964;18:586–608.
  • Verschaffelt E. The cause determining the selection of food in some herbivorous insects. Proc. K. Ned. Akad. Wet. 1910;13:536–542.
  • David WAL, Gardiner BOC. Oviposition and the hatching of the eggs of Pieris brassicae (L.) in a laboratory culture. Bull. Entomol. Res. 1962;53:91–109.
  • Traynier RMM, Truscott RJW. Potent natural egg-laying stimulant for cabbage butterfly Pieris rapae. J. Chem. Ecol. 1991;17:1371–1380.
  • Nishida R, Fukami H. Ecological adaptation of an Aristolochiaceae-feeding swallowtail butterfly, Atrophaneura alcinous, to aristolochic acids. J. Chem. Ecol. 1989;15:2549–2563.
  • Murata T, Mori N, Nishida R. Larval feeding stimulants for a Rutaceae-feeding swallowtail butterfly, Papilio xuthus L. in Citrus unshiu leaves. J. Chem. Ecol. 2011;37:1099–1109.
  • Dethier VG. Chemical factors determining the choice of food plants by Papilio larvae. Am. Nat. 1941;75:61–73.
  • Hamamura Y, Hayashiya K, Naito K, Matsuura K, Nishida J. Food selection by silkworm larvae. Nature. 1962;194:754–755.
  • Tanaka K, Uda Y, Ono Y, Nakagawa T, Suwa M, Yamaoka R, Touhara K. Highly selective tuning of a silkworm olfactory receptor to a key mulberry leaf volatile. Curr. Biol. 2009;19:1–10.
  • Van Emden HF. Aphids as phytochemists. In: Harborne JB, editor. Phytochemical ecology: annual proceedings of the Phytochemical Society, No. 8. London: Academic Press; 1972. p. 34–36.
  • Montllor CB. The influence of plant chemistry on aphid feeding behavior. In: Bernays EA, editor. Insect–plant interactions III. Boca Ranton (FL): CRC Press; 1991. p. 125–173.
  • Takemura M, Nishida R, Mori N, Kuwahara Y. Acylated flavonol glycosides as probing stimulants of a bean aphid, Megoura crassicauda, from Vicia angustifolia. Phytochemistry. 2002;61:135–140.
  • Takemura M, Kuwahara Y, Nishida R. Chemical basis of feeding behavior of a bean aphid, Megoura crassicauda, controlled by primary and secondary substances in the host Vicia angustifolia. Entomol. Exp. Appl. 2006;121:51–57.
  • Klingauf F. Die Wirkung des Glucosids Phlorizin auf das Wirtswahlverhalten von Rhopalosiphum imsertum (Walk.) und Aphis pomi De Geer (Homoptera: Aphididae). Z. Angew. Entomol. 1971;68:41–55.
  • Nishida R, Ohsugi T, Fukami H, Nakajima S. Oviposition deterrent of a Rutaceae-feeding swallowtail butterfly, Papilio xuthus, from a non-host rutaceous plant, Orixa japonica. Agric. Biol. Chem. 1990;54:1265–1270.
  • Ono H, Kuwahara Y, Nishida R. Hydroxybenzoic acid derivatives in a non-host rutaceous plant, Orixa japonica, deter both oviposition and larval feeding in a Rutaceae-feeding swallowtail butterfly, Papilio xuthus L. J. Chem. Ecol. 2004;30:287–301.
  • Ohta N, Mori N, Kuwahara Y, Nishida R. A hemiterpene glucoside as a probing deterrent of the bean aphid, Megoura crassicauda, from a non-host vetch, Vicia hirsuta. Phytochemistry. 2006;67:584–588.
  • Dinan L. Phytoecdysteroids: biological aspects. Phytochemistry. 2001;57:325–339.
  • Toong YC, Schooley DEA, Baker FC. Isolation of insect juvenile hormone III from a plant. Nature. 1988;333:170–171.
  • Bowers WS, Nishida R. Juvocimenes: potent juvenile hormone mimics from sweet basil. Science. 1980;209:1030–1032.
  • Nishida R, Bowers WS, Evans PH. Synthesis of highly active juvenile hormone analogs, juvocimene I and II, from oil of sweet basil, Ocimum basilicum L. J. Chem. Ecol. 1984;10:1435–1451.
  • Nishida R, Bowers WS, Evans PH. Juvadecene: discovery of a juvenile hormone mimic in the plant, Macropiper excelsum. Arch. Insect Biochem. Physiol. 1983;1:17–24.
  • Duffey SS. Sequestration of plant natural products by insects. Annu. Rev. Entomol. 1980;25:447–477.
  • Rothschild M. Secondary plant substances and warning colouration in insects. Symp. R. Entomol. Soc. London. 1972;6:59–83.
  • Nishida R. Sequestration of plant secondary compounds by butterflies and moths. Chemoecology. 1995;5/6:127–138.
  • Nishida R. Sequestration of defensive substances from plants by Lepidoptera. Annu. Rev. Entomol. 2002;47:57–92.
  • Nishida R, Kim CS, Fukami H, Irie R. Ideamine N-oxides: pyrrolizidine alkaloids sequestered by a danaine butterfly, Idea leuconoe. Agric. Biol. Chem. 1991;55:1787–1792.
  • Kim CS, Nishida R, Fukami H, Abe F, Yamauchi T. 14-Deoxyparsonsianidine N-oxide: A pyrrolizidine alkaloid sequestered by the giant danaine butterfly, Idea leuconoe. Biosci. Biotechnol. Biochem. 1994;58:980–981.
  • Edgar JA. Parsonsieae: ancestral larval foodplants of the Danainae and Ithomiinae. In: Vane-Wright RI, Ackery PR, editors. The biology of butterflies. London: Academic Press; 1984. p. 91–93.
  • Nishida R, Rothschild M, Mummery R. A cyanoglucoside, sarmentosin, from the Magpie moth, Abraxas grossulariata, Geometridae: Lepidoptera. Phytochemistry. 1994;36:37–38.
  • Nahrstedt A, Walther A, Wray V. Sarmentosin epoxide, a new cyanogenic compounds from Sedum cepaea. Phytochemistry. 1982;21:107–110.
  • Nishida R, Rothschild M. A cyanoglucoside stored by a Sedum-feeding Apollo butterfly, Parnassius phoebus. Experientia. 1995;51:267–269.
  • Seyama I, Narahashi T. Modulation of sodium channels of squid nerve membrane by grayanotoxin I. J. Pharmacol. Exp. Ther. 1981;219:614–624.
  • Nishida R, Fukami H, Iriye R, Kumazawa Z. Accumulation of highly toxic ericaceous diterpenoids by the geometrid moth, Arichanna gaschkevitchii. Agric. Biol. Chem. 1990;54:2347–2352.
  • Nishida R, Fukami H. Host plant iridoid-based chemical defense of an aphid, Acyrthosiphon nipponicus against ladybird beetles. J. Chem. Ecol. 1989;15:1837–1845.
  • Kamo T, Tokuoka Y, Miyazaki M. Quantification of canavanine, 2-aminoethanol, and cyanamide in Aphis craccivora and its host plants, Robinia pseudoacacia and Vicia angustifolia: effects of these compounds on larval survivorship of Harmonia axyridis. J. Chem. Ecol. 2012;38:1552–1560.
  • Boppré M. Redefining “pharmacophagy”. J. Chem. Ecol. 1984;10:1151–1154.
  • Nishida R, Fukami H. Sequestration of distasteful compounds by some pharmacophagous insects. J. Chem. Ecol. 1990;16:151–164.
  • Nishida R, Fukami H, Miyata T, Takeda M. Clerodendrins: feeding stimulants for the adult turnip sawfly, Athalia rosae ruficornis, from Clerodendron trichotomum (Verbenaceae). Agric. Biol. Chem. 1989;53:1641–1645.
  • Nishida R, Kawai K, Amano T, Kuwahara Y. Pharmacophagous feeding stimulant activity of neo-clerodane diterpenoids for the turnip sawfly, Athalia rosae ruficornis. Biochem. Syst. Ecol. 2004;32:15–25.
  • Nishida R, Fukami H, Tanaka Y, Magalhães BP, Yokoyama M, Blumenschein A. Isolation of feeding stimulants of Brazilian leaf beetles (Diabrotica speciosa and Cerotoma arcuata) from the root of Ceratosanthes hilariana. Agric. Biol. Chem. 1986;50:2831–2836.
  • Nishida R, Yokoyama M, Fukami H. Sequestration of cucurbitacin analogs by New and Old World chrysomelid leaf beetles in the tribe Luperini. Chemoecology. 1992;3:19–24.
  • Koyama J, Teruya T, Tanaka K. Eradication of the Oriental fruit fly (Diptera: Tephritidae) from the Okinawa Islands by a male annihilation method. J. Econ. Entomol. 1984;77:468–472.
  • Nishida R, Tan KH, Serit M, Lajis NH, Sukari AM, Takahashi S, Fukami H. Accumulation of phenylpropanoids in the rectal glands of males of the Oriental fruit fly, Dacus dorsalis. Experientia. 1988;44:534–536.
  • Wee SL, Tan KH. Allomonal and hepatotoxic effects following methyl eugenol consumption in Bactrocera papayae against Gekko monarchus. J. Chem. Ecol. 2001;27:953–964.
  • Tan KH, Nishida R. Methyl eugenol: its occurrence, distribution, and role in nature, especially in relation to insect behavior and pollination. J. Insect Sci. 2012;12:1–60.
  • Shelly TE, Nishida R. Larval and adult feeding on methyl eugenol and the mating success of male oriental fruit flies, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Entomol. Exp. Appl. 2004;112:155–158.
  • Nishida R, Schulz S, Kim CS, Fukami H, Kuwahara Y, Honda K, Hayashi N. Male sex pheromone of the giant danaine butterfly, Idea leuconoe. J. Chem. Ecol. 1996;22:949–972.
  • Schulz S, Nishida R. The pheromone system of the male danaine butterfly, Idea leuconoe. Bioorg. Med. Chem. 1996;4:341–349.
  • Baker TC, Nishida R, Roelofs WL. Close range attraction of female Oriental fruit moths to herbal scent of male hairpencils. Science. 1981;214:1359–1361.
  • Nishida R, Fukami H, Baker TC, Roelofs WL, Acree TE. Oriental fruit moth pheromone: attraction of females by an herbal essence. In: Acree TE, Soderlund DM, editors. Semiochemistry: flavors and pheromones. Berlin: Walter de Gruyter; 1985. p. 47–63.
  • Shelly TE, Dewire AM. Chemically mediated mating success in male oriental fruit flies, Bactrocera dorsalis (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 1994;87:375–382.
  • Tan KH, Nishida R. Sex pheromone and mating competition after methyl eugenol consumption in Bactrocera dorsalis complex. In: McPheron BA, Steck GJ, editors. Fruit fly pests – a world assessment of their biology and management. Port St. Lucie (FL): St. Lucie Press; 1996. p. 147–153.
  • Tan KH, Nishida R. Ecological significance of male attractant in the defence and mating strategies of the fruit fly, Bactrocera papayae. Exp. Appl. 1998;89:155–158.
  • Wee SL, Tan KH, Nishida R. Pharmacophagy of methyl eugenol by males enhances sexual selection of Bactrocera carambolae (Diptera: Tephritidae). J. Chem. Ecol. 2007;33:1272–1282.
  • Tan KH, Tokushima I, Ono H, Nishida R. Comparison of phenylpropanoid volatiles in male rectal pheromone gland after methyl eugenol consumption, and molecular phylogenetic relationship of four global pest fruit fly species – Bactrocera invadens, B. dorsalis, B. correcta and B. zonata. Chemoecology. 2011;21:25–33.
  • Tokushima I, Orankanok W, Tan KH, Ono H, Nishida R. Accumulation of phenylpropanoid and sesquiterpenoid volatiles in male rectal pheromonal glands of the guava fruit fly, Bactrocera correcta. J. Chem. Ecol. 2010;36:1327–1334.
  • Amano T, Nishida R, Kuwahara Y, Fukami H. Pharmacophagous acquisition of clerodendrins by the turnip sawfly, (Athalia rosae ruficornis) and their role in the mating behavior. Chemoecology. 1999;9:145–150.
  • Visser JH. Host odor perception in phytophagous insects. Annu. Rev. Entomol. 1986;31:121–144.
  • Fornasiero U, Guitto A, Caporale G, Baccichetti F, Musajo L. Identificazion della sostanza attrattiva per i maschi della Ceratitis capitata, contenunuta nell’olio essenziale dei semi di Angelica archangelica. Gazz. Chim. Ital. 1969;99:700–710.
  • Nishida R, Shelly TE, Whittier TS, Kaneshiro KY. α-Copaene, a potential rendezvous cue for the Mediterranean fruit fly, Ceratitis capitata. J. Chem. Ecol. 2000;26:87–100.
  • Yasui H, Yasuda T, Fukaya M, Akino T, Wakamura S, Hirai Y, Kawasaki K, Ono H, Narahara M, Kousa K, Fukuda T. Host plant chemicals serve intraspecific communication in the white-spotted longicorn beetle, Anoplophora malasiaca (Thomson) (Coleoptera: Cerambycidae). Appl. Entomol. Zool. 2007;42:255–268.
  • Linn C Jr, Feder JL, Nojima S, Dambroski HR, Berlocher SH, Roelofs WL. Fruit odor discrimination and sympatric host race formation in Rhagoletis. Proc. Natl. Acad. Sci. USA. 2011;100:11490–11493.
  • Tan KH, Nishida R, Toong YC. Floral synomone of a wild orchid, Bulbophyllum cheiri, lures Bactrocera fruit flies for pollination. J. Chem. Ecol. 2002;28:1161–1172.
  • Tan KH, Tan LT, Nishida R. Floral phenylpropanoid cocktail and architecture of Bulbophyllum vinaceum orchid in attracting fruit flies for pollination. J. Chem. Ecol. 2006;32:2429–2441.
  • Tan KH, Nishida R. Synomone or kairomone? - Bulbophyllum apertum flower releases raspberry ketone to attract Bactrocera fruit flies. J. Chem. Ecol. 2005;31:509–519.
  • Tan KH, Nishida R. Mutual reproductive benefits between a wild orchid, Bulbophyllum patens, and Bactrocera fruit flies via a floral synomone. J. Chem. Ecol. 2000;26:533–546.
  • Khoo CCH, Tan KH. Attraction of both sexes of melon fly, Bactrocera cucurbitae to conspecific males – a comparison after pharmacophagy of cue-lure and a new attractant – zingerone. Entomol. Exp. Appl. 2000;97:312–320.
  • Tan KH, Nishida R. Zingerone in floral synomone of Bulbophyllum baileyi (Orchidaceae) attracts Bactrocera fruit fly during pollination. Biochem. Syst. Ecol. 2007;35:334–341.
  • Fay HAC. A highly effective and selective male lure for Bactrocera jarvisi (Tryon) (Diptera:Tephritidae). Aust. J. Entomol. 2012;51:189–197.
  • Ozaki K, Ryuda M, Yamada A, Utoguchi A, Ishimoto H. A gustatory receptor involved in host plant recognition for oviposition of a swallowtail butterfly. Nat. Commun. 2011;2:542.
  • Tsuchihara K, Wazawa T, Ishii Y, Yanagida T, Nishida R, Zheng XG, Ishiguro M, Yoshihara K, Hisatomi O, Tokunaga F. Characterization of chemoreceptive protein binding to an oviposition stimulant using a fluorescent micro-binding assay in a butterfly. FEBS Lett. 2008;583:345–349.
  • Berenbaum MR, Zangerl AR. Facing the future of plant-insect interaction research: Le retour à la “Raison d’Être”. Plant Physiol. 2008;146:804–811.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.