959
Views
7
CrossRef citations to date
0
Altmetric
Microbiology & Fermentation Technology

Lactate production as representative of the fermentation potential of Corynebacterium glutamicum 2262 in a one-step process

, , , , , , & show all
Pages 343-349 | Received 30 Aug 2013, Accepted 23 Oct 2013, Published online: 14 Apr 2014

References

  • Tsao GT, Cao NJ, Du J, Gong CS. Production of multifunctional organic acids from renewable resources. Adv. Biochem. Eng. Biotechnol. 1999;65:243–280.
  • Chotani G, Dodge T, Hsu A, Kumar M, LaDuca R, Trimbur D, Weyler W, Sanford K. The commercial production of chemicals using pathway engineering. Biochim. Biophys. Acta. 2000;1543:434–455.10.1016/S0167-4838(00)00234-X
  • Ohara H. Biorefinery. Appl. Microbiol. Biotechnol. 2003;62:474–477.10.1007/s00253-003-1383-7
  • Sauer M, Porro D, Mattanovich D, Branduardi P. Microbial production of organic acids: expanding the markets. Trends Biotechnol. 2008;26:100–108.10.1016/j.tibtech.2007.11.006
  • Soccol CR, Vandenberghe LPS, Rodrigues C, Pandey A. New Perspectives for Citric Acid Production and Application. Food Technol. Biotechnol. 2006;44:141–149.
  • Becker J, Wittmann C. Systems and synthetic metabolic engineering for amino acid production – the heartbeat of industrial strain development. Curr. Opin. Biotechnol. 2012;23:718–726.10.1016/j.copbio.2011.12.025
  • Okino S, Inui M, Yukawa H. Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl. Microbiol. Biotechnol. 2005;68:475–480.10.1007/s00253-005-1900-y
  • Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl. Microbiol. Biotechnol. 2008;81:459–464.10.1007/s00253-008-1668-y
  • Okino S, Suda M, Fujikura K, Inui M, Yukawa H. Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl. Microbiol. Biotechnol. 2008;78:449–454.10.1007/s00253-007-1336-7
  • Litsanov B, Brocker M, Bott M. Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate. Appl. Environ. Microbiol. 2012;78:3325–3337.10.1128/AEM.07790-11
  • Inui M, Kawaguchi H, Murakami S, Vertes AA, Yukawa H. Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J. Mol. Microbiol. Biotechnol. 2004;8:243–254.10.1159/000086705
  • Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ. Corynebacterium glutamicum tailored for efficient isobutanol production. Appl. Environ. Microbiol. 2011;77:3300–3310.10.1128/AEM.02972-10
  • Inui M, Suda M, Okino S, Nonaka H, Puskas LG, Vertes AA, Yukawa H. Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions. Microbiology 2007;153:2491–2504.10.1099/mic.0.2006/005587-0
  • Ehira S, Shirai T, Teramoto H, Inui M, Yukawa H. Group 2 sigma factor SigB of Corynebacterium glutamicum positively regulates glucose metabolism under conditions of oxygen deprivation. Appl. Environ. Microbiol. 2008;74:5146–5152.10.1128/AEM.00944-08
  • Yamamoto S, Sakai M, Inui M, Yukawa H. Diversity of metabolic shift in response to oxygen deprivation in Corynebacterium glutamicum and its close relatives. Appl. Microbiol. Biotechnol. 2011;90:1051–1061.10.1007/s00253-011-3144-3
  • Martinez I, Bennett GN, San KY. Metabolic impact of the level of aeration during cell growth on anaerobic succinate production by an engineered Escherichia coli strain. Metab. Eng. 2010;12:499–509.10.1016/j.ymben.2010.09.002
  • Vemuri GN, Eiteman MA, Altman E. Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions. J. Ind. Microbiol. Biotechnol. 2002;28:325–332.10.1038/sj.jim.7000250
  • Champagne CP, Gardner NJ. Effect of process parameters on the production and drying of Leuconostoc mesenteroides cultures. J. Ind. Microbiol. Biotechnol. 2002;28:291–296.10.1038/sj.jim.7000245
  • Horn G, Hofweber R, Kremer W, Kalbitzer HR. Structure and function of bacterial cold shock proteins. Cell. Mol. Life Sci. 2007;64:1457–1470.10.1007/s00018-007-6388-4
  • Delaunay S, Gourdon P, Lapujade P, Mailly E, Oriol E, Engasser JM, Lindley ND, Goergen J-L. An improved temperature-triggered process for glutamate production with Corynebacterium glutamicum. Enzyme Microb. Technol. 1999;25:762–768.10.1016/S0141-0229(99)00120-9
  • Von der Osten CH, Gioannetti C, Sinskey AJ. Design of a defined medium for growth of Corynebacterium glutamicum in which citrate facilitates iron uptake. Biotechnol. Lett. 1989;11:11–16.10.1007/BF01026778
  • Bokas D, Uy D, Grattepanche F, Duportail G, Guedon E, Delaunay S, Goergen JL. Cell envelope fluidity modification for an effective glutamate excretion in Corynebacterium glutamicum 2262. Appl. Microbiol. Biotechnol. 2007;76:773–781.10.1007/s00253-007-1046-1
  • Seletzky JM, Noack U, Fricke J, Hahn S, Buchs J. Metabolic activity of Corynebacterium glutamicum grown on L-lactic acid under stress. Appl. Microbiol. Biotechnol. 2006;72:1297–1307.10.1007/s00253-006-0436-0
  • Inui M, Murakami S, Okino S, Kawaguchi H, Vertes AA, Yukawa H. Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J. Mol. Microbiol. Biotechnol. 2004;7:182–196.10.1159/000079827
  • Cocaign-Bousquet M, Lindley ND. Pyruvate overflow and carbon flux within the central metabolic pathways of Corynebacterium glutamicum during growth on lactate. Enzyme Microb. Technol. 1995;17:260–267.10.1016/0141-0229(94)00023-K
  • Wendisch PG, Kreutzer C, Kalinowski J, Patek M, Sahm H, Eikmanns BJ. Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene. Microbiology 1998;144:915–927.10.1099/00221287-144-4-915
  • Uy D, Delaunay S, Germain P, Engasser JM, Goergen JL. Instability of glutamate production by Corynebacterium glutamicum 2262 in continuous culture using the temperature-triggered process. J. Biotechnol. 2003;104:173–184.10.1016/S0168-1656(03)00151-2
  • Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF. Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl. Environ. Microbiol. 2005;71:5920–5928.10.1128/AEM.71.10.5920-5928.2005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.