873
Views
21
CrossRef citations to date
0
Altmetric
Biochemistry & Molecular Biology

Characterization of a thermophilic 4-O-β-d-mannosyl-d-glucose phosphorylase from Rhodothermus marinus

, , , , , , , & show all
Pages 263-270 | Received 28 Oct 2013, Accepted 11 Nov 2013, Published online: 14 Apr 2014

References

  • Moreira LRS, Filho EXF. An overview of mannan structure and mannan-degrading enzyme systems. Appl. Microbiol. Biotechnol. 2008;79:165–178.
  • Shallom D, Shoham Y. Microbial hemicellulases. Curr. Opin. Microbiol. 2003;6:219–228.
  • Chauhan PS, Puri N, Sharma P, Gupta N. Mannanases: microbial sources, production, properties and potential biotechnological applications. Appl. Microbiol. Biotechnol. 2012;93:1817–1830.
  • Senoura T, Ito S, Taguchi H, Higa M, Hamada S, Matsui H, Ozawa T, Jin S, Watanabe J, Wasaki J, Ito S. New microbial mannan catabolic pathway that involves a novel mannosylglucose phosphorylase. Biochem. Biophys. Res. Commun. 2011;408:710–706.
  • Kawahara R, Saburi W, Odaka R, Taguchi H, Ito S, Mori H, Matsui H. Metabolic mechanism of mannan in a ruminal bacterium, Ruminococcus albus, involving two mannoside phosphorylases and cellobiose 2-epimerase: Discovery of a new carbohydrate phosphorylase, beta-1,4-mannooligosaccharide phosphorylase. J. Biol. Chem. 2012;287:42389–42399.
  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 2009;37:D233–D238.
  • Nihira T, Suzuki E, Kitaoka M, Nishimoto M, Ohtsubo K, Nakai H. Discovery of beta-1,4-d-mannosyl-N-acetyl-d-glucosamine phosphorylase involved in the metabolism of N-glycans. J. Biol. Chem. 2013;288:27366–27374.
  • Ladevèze S, Tarquis L, Cecchini DA, Bercovici J, Andrè I, Topham CM, Morel S, Laville E, Monsan PF, Lombard V, Henrrisat B, Potocki-Véronèse G. Role of glycoside phosphorylases in mannose foraging by human gut bacteria. J. Biol. Chem. 2013;288:32370–32383.
  • Alfredsson GA, Kristjánsson JK, Hjörleifsdottir S, Stetter KO. Rhodothermus marinus, gen. nov., sp. nov., a thermophilic, halophilic bacterium from submarine hot springs in Iceland. J. Gen. Microbiol. 1988;134:299–306.
  • Dahlberg L, Holst O, Kristjánsson JK. Thermostable xylanolytic enzymes from Rhodothermus marinus grown on xylan. Appl. Microbiol. Biotechnol. 1993;40:63–68.
  • Manelius Å, Dahlberg L, Holst O. Some properties of a thermostable beta-xylosidases from Rhodothermus marinus. Appl. Biochem. Biotechnol. 1994;44:39–48.
  • Hreggvidsson GO, Kaiste E, Holst O, Eggertsson G, Palsdottir A, Kristjánsson JK. An extremely thermostable cellulase from the thermophilic eubacterium Rhodothermus marinus. Appl. Environ. Microbiol. 1996;62:3047–3049.
  • Spilliaert R, Hreggvidsson GO, Kristjánsson JK, Eggertsson G, Palsdottir A. Cloning and sequencing of a Rhodothermus marinus gene, bglA, coding for a thermostable beta-glucanase and its expression in Escherichia coli. Eur. J. Biochem. 1994;224:923–930.
  • Hobel CFV, Hreggvidsson GO, Marteinsson VT, Bahrani-Mougeot F, Einarsson JM, Kristjánsson JK. Cloning, expression, and characterization of a highly thermostable family 18 chitinase from Rhodothermus marinus. Extremophiles. 2005;9:53–64.
  • Politz O, Krah M, Thomsen KK, Borriss R. A highly thermostable endo-(1,4)-beta-mannanase from the marine bacterium Rhodothermus marinus. Appl. Microbiol. Biotechnol. 2000;53:715–721.
  • Jorge CD, Sampaio MM, Hreggvidsson GÓ, Kristjánsson JK, Santos H. A highly thermostable trehalase from the thermophilic bacterium Rhodothermus marinus. Extremophiles. 2007;11:115–122.
  • Gomes I, Gomes J, Steiner W. Highly thermostable amylase and pullulanase of the extrea\me thermophilic eubacterium Rhodothermus marinus: production and partial characterization. Bioresour. Technol. 2003;90:207–214.
  • Ojima T, Saburi W, Sato H, Yamamoto T, Mori H, Matsui H. Biochemical characterization of a thermophilic cellobiose 2-epimerase from a thermohalophilic bacterium, Rhodothermus marinus JCM9785. Biosci. Biotechol. Biochem. 2011;75:2162–2168.
  • Watanabe J, Nishimukai M, Taguchi H, Senoura T, Hamada S, Matsui H, Yamamoto T, Wasaki J, Hara H, Ito S. Prebiotic properties of epilactose. J. Dairy Sci. 2008;91:4518–4526.
  • Sato H, Saburi W, Ojima T, Taguchi H, Mori H, Matsui H. Immobilization of a thermostable cellobiose 2-epimerase from Rhodothermus marinus JCM9785 and continuous production of epilactose. Biosci. Biotechnol. Biochem. 2012;76:1584–1587.
  • Nolan M, Tindall BJ, Pomrenke H, Lapidus A, Copeland A, Glavina Del Rio T, Lucas S, Chen F, Tice H, Cheng JF, Saunders E, Han C, Bruce D, Goodwin L, Chain P, Pitluck S, Ovchinikova G, Pati A, Ivanova N, Mavromatis K, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Brettin T, Göker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Detter JC. Complete genome sequence of Rhodothermus marinus type strain (R-10T). Stand. Genomic Sci. 2009;1:283–290.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254.
  • Dayhoff MO, Perlmann GE, MacInnes DA. The partial specific volumes, in aqueous solution, of three proteins. J. Am. Chem. Soc. 1952;74:2515–2517.
  • Moore S, Stein WH. Photometric ninhydrin method for use in the chromatography of amino acids. J. Biol. Chem. 1948;176:367–388.
  • Somogyi M. Notes on sugar determination. J. Biol. Chem. 1951;195:19–23.
  • Cleland WW. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim. Biophys. Acta. 1963;67:104–137.
  • Lowry OH, Lopez JA. The determination of inorganic phosphate in the presence of labile phosphate esters. J. Biol. Chem. 1946;162:421–428.
  • Nishimoto M, Kitaoka M. Identification of N-acetylhexosamine 1-kinase in the complete lacto-N-biose I/galacto-N-biose metabolic pathway in Bifidobacterium longum. Appl. Environ. Microbiol. 2007;73:6444–6449.
  • Nakae S, Ito S, Higa M, Senoura T, Wasaki J, Hijikata A, Shionyu M, Ito S, Shirai T. Structure of novel enzyme in mannan biodegradation process 4-O-beta-d-mannosyl-d-glucose phosphorylase MGP. J. Mol. Biol. 2013;425:4468–4478.
  • Watanabe K, Chishiro K, Kitamura K, Suzuki Y. Proline residues responsible for thermostability occur with high frequency in the loop regions of an extremely thermostable oligo-1,6-glucosidase from Bacillus thermoglucosidasius KP1006. J. Biol. Chem. 1991;266:24287–24294.
  • Hamura K, Saburi W, Abe S, Morimoto N, Taguchi H, Mori H, Matsui H. Enzymatic characteristics of cellobiose phosphorylase from Ruminococcus albus NE1 and kinetic mechanism of unusual substrate inhibition in reverse phophorolysis. Biosci. Biotechnol. Biochem. 2012;76:812–818.
  • Sawano T, Saburi W, Hamura K, Matsui H, Mori H. Characterization of Ruminococcus albus cellodextrin phosphorylase and identification of a key phenylalanine residue for acceptor specificity and affinity to the phosphate group. FEBS J. 2013;280:4463–4473.
  • Nihira T, Nakai H, Chiku K, Kitaoka M. Discovery of nigerose phosphorylase from Clostridium phytofermentans. Appl. Microbiol. Biotechnol. 2012;93:1513–1522.
  • Kitaoka M, Sasaki T, Taniguchi H. Phosphorolytic reaction of Cellvibrio gilvus cellobiose phosphorylase. Biosci. Biotechnol. Biochem. 1992;56:652–655.
  • Honda Y, Kitaoka M, Hayashi K. Reaction mechanism of chitobiose phosphorylase from Vibrio proteolyticus: identification of family 36 glycosyltransferase in Vibrio. Biochem. J. 2004;377:225–232.
  • Kitaoka M, Matsuoka Y, Mori K, Nishimoto M, Hayashi K. Characterization of a bacterial laminaribiose phosphorylase. Biosci. Biotechnol. Biochem. 2012;76:343–348.
  • Derensy-Dron D, Krzewinski F, Brassart C, Bouquelet S. Beta-1,3-galactosyl-N-acetylhexosamine phosphorylase from Bifidobacterium bifidum DSM 20082: characterization, partial purification and relation to mucin degradation. Biotechnol. Appl. Biochem. 1999;29:3–10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.