1,500
Views
18
CrossRef citations to date
0
Altmetric
Award Review

Genetic and biochemical analysis of the antibiotic biosynthetic gene clusters on the Streptomyces linear plasmid

Pages 183-189 | Received 27 Nov 2013, Accepted 24 Dec 2013, Published online: 16 Apr 2014

References

  • Kirby R, Hopwood DA. Genetic determination of methylenomycin synthesis by the SCP1 plasmid of Streptomyces coelicolor A3(2). J. Gen. Microbiol. 1977;98:239–252.10.1099/00221287-98-1-239
  • Kinashi H, Shimaji M, Sakai A. Giant linear plasmids in Streptomyces which code for antibiotic biosynthesis genes. Nature. 1987;328:454–456.10.1038/328454a0
  • Bentley SD, Brown S, Murphy LD, Harris DE, Quail MA, Parkhill J, Barrell BG, McCormick JR, Santamaria RI, Losick R, Yamasaki M, Kinashi H, Chen CW, Chandra G, Jakimowicz D, Kieser HM, Kieser T, Chater KF. SCP1, a 356,023 bp linear plasmid adapted to the ecology and developmental biology of its host, Streptomyces coelicolor A3(2). Mol. Microbiol. 2004;51:1615–1628.10.1111/j.1365-2958.2003.03949.x
  • Gravius B, Glocker D, Pigac J, Pandza K, Hranueli D, Cullum J. The 387 kb linear plasmid pPZG101 of Streptomyces rimosus and its interactions with the chromosome. Microbiology. 1994;140:2271–2277.10.1099/13500872-140-9-2271
  • Kinashi H, Otten SL, Duncan JS, Hutchinson CR. Frequent loss and restoration of antibiotic production by Streptomyces lasaliensis. J. Antibiot. 1988;41:624–637.10.7164/antibiotics.41.624
  • Migita A, Watanabe M, Hirose Y, Watanabe K, Tokiwano T, Kinashi H, Oikawa H. Identification of a gene cluster of polyether antibiotic lasalocid from Streptomyces lasaliensis. Biosci. Biotechnol. Biochem. 2009;73:169–176.10.1271/bbb.80631
  • Kinashi H, Mori E, Hatani A, Nimi O. Isolation and characterization of large linear plasmids from lankacidin-producing Streptomyces species. J. Antibiot. 1994;47:1447–1455.10.7164/antibiotics.47.1447
  • Mochizuki S, Hiratsu K, Suwa M, Ishii T, Sugino F, Yamada K, Kinashi H. The large linear plasmid pSLA2-L of Streptomyces rochei has an unusually condensed gene organization for secondary metabolism. Mol. Microbiol. 2003;48:1501–1510.10.1046/j.1365-2958.2003.03523.x
  • Ohnishi Y, Kameyama S, Onaka H, Horinouchi S. The A-factor regulatory cascade leading to streptomycin production in Streptomyces griseus: identification of a target gene of the A-factor receptor. Mol. Microbiol. 1999;34:102–111.10.1046/j.1365-2958.1999.01579.x
  • Horinouchi S, Beppu T. Hormonal control by A-factor of morphological development and secondary metabolism in Streptomyces. Proc. Jpn. Acad. Ser. B. 2007;83:277–295.10.2183/pjab.83.277
  • Harada S, Higashide E, Fugono T, Kishi T. Isolation and structures of T-2636 antibiotics. Tetrahedron Lett. 1969;27:2239–2244.10.1016/S0040-4039(01)88131-4
  • Uramoto M, Otake N, Ogawa Y, Yonehara H. The structures of bundlin A (lankacidin) and bundlin B. Tetrahedron Lett. 1969;27:2249–2254.10.1016/S0040-4039(01)88133-8
  • Arakawa K, Sugino F, Kodama K, Ishii T, Kinashi H. Cyclization mechanism for the synthesis of macrocyclic antibiotic lankacidin in Streptomyces rochei. Chem. Biol. 2005;12:249–256.10.1016/j.chembiol.2005.01.009
  • Staunton J, Weissman KJ. Polyketide biosynthesis: a millennium review. Nat. Prod. Rep. 2001;18:380–416.10.1039/a909079g
  • Moss SJ, Martin CJ, Wilkinson B. Loss of co-linearity by modular polyketide synthases: a mechanism for the evolution of chemical diversity. Nat. Prod. Rep. 2004;21:575–593.10.1039/b315020h
  • Hertweck C. The biosynthetic logic of polyketide diversity. Angew. Chem. Int. Ed. Engl. 2009;48:4688–4716.10.1002/anie.v48:26
  • Dickschat JS, Vergnolle O, Hong H, Garner S, Bidgood SR, Dooley HC, Deog Z, Leadlay PF, Sun Y. An additional dehydratase-like activity is required for lankacidin antibiotic biosynthesis. ChemBioChem. 2011;12:2408–2412.10.1002/cbic.v12.16
  • Gaitatzis N, Silakowski B, Kunze B, Nordsiek G, Blöker H, Höfle G, Müller R. The biosynthesis of the aromatic myxobacterial electron transport inhibitor stigmatellin is directed by a novel type of modular polyketide synthase. J. Biol. Chem. 2002;277:13082–13090.10.1074/jbc.M111738200
  • Olano C, Wilkinson B, Moss SJ, Braña AF, Méndez C, Leadlay PF, Salas JA. Evidence from engineered gene fusions for the repeated use of a module in a modular polyketide synthase. Chem. Commun. 2003:2780–2782.
  • He J, Hertweck C. Iteration as programmed event during polyketide assembly; molecular analysis of the aureothin biosynthesis gene cluster. Chem. Biol. 2003;10:1225–1232.10.1016/j.chembiol.2003.11.009
  • Otsuka M, Ichinose K, Fujii I, Ebizuka Y. Cloning, sequencing, and functional analysis of an iterative type I polyketide synthase gene cluster for biosynthesis of the antitumor chlorinated polyenone neocarzilin in “Streptomyces carzinostaticus”. Antimicrob. Agents Chemother. 2004;48:3468–3476.10.1128/AAC.48.9.3468-3476.2004
  • Traitcheva N, Jenke-Kodama H, He J, Dittmann E, Hertweck C. Non-colinear polyketide biosynthesis in the aureothin and neoaureothin pathways: an evolutionary perspective. ChemBioChem. 2007;8:1841–1849.10.1002/(ISSN)1439-7633
  • Meiser P, Weissman KJ, Bode HB, Krug D, Dickschat JS, Sandmann A, Müller R. DKxanthene biosynthesis--understanding the basis for diversity-oriented synthesis in myxobacterial secondary metabolism. Chem. Biol. 2008;15:771–781.10.1016/j.chembiol.2008.06.005
  • Tatsuno S, Arakawa K, Kinashi H. Analysis of modular-iterative mixed biosynthesis of lankacidin by heterologous expression and gene fusion. J. Antibiot. 2007;60:700–708.10.1038/ja.2007.90
  • Tatsuno S, Arakawa K, Kinashi H. Extensive mutational analysis ofmodular-iterative mixed polyketide biosynthesis of lankacidin in Streptomyces rochei. Biosci. Biotechnol. Biochem. 2009;73:2712–2719.10.1271/bbb.90591
  • Gäumann E, Hütter R, Keller-Schierlein W, Neipp L, Prelog V, Zähner H. Lankamycin und lankacidin. Helv. Chim. Acta. 1960;80:601–606. German.10.1002/(ISSN)1522-2675
  • Arakawa K, Kodama K, Tatsuno S, Ide S, Kinashi H. Analysis of the loading and hydroxylation steps in lankamycin biosynthesis in Streptomyces rochei. Antimicrob. Agents Chemother. 2006;50:1946–1952.10.1128/AAC.00016-06
  • Arakawa K, Cao Z, Suzuki N, Kinashi H. Isolation, structural elucidation, and biosynthesis of 15-norlankamycin derivatives produced by a type-II thioesterase disruptant of Streptomyces rochei. Tetrahedron. 2011;67:5199–5205.10.1016/j.tet.2011.05.047
  • Arakawa K, Suzuki T, Kinashi H. Gene disruption analysis of two glycosylation steps in lankamycin biosynthesis in Streptomyces rochei. Actinomycetologica. 2008;22:35–41.10.3209/saj.SAJ220202
  • Bibb MJ. Regulation of secondary metabolism in Streptomyces. Curr. Opin. Microbiol. 2005;8:208–215.10.1016/j.mib.2005.02.016
  • Chater KF. Regulation of sporulation in Streptomyces coelicolor A3(2): a checkpoint multiplex? Curr. Opin. Microbiol. 2001;4:667–673.10.1016/S1369-5274(01)00267-3
  • Takano E. γ-Butyrolactones: Streptomyces signaling molecules regulating antibiotic production and differentiation. Curr. Opin. Microbiol. 2006;9:287–294.10.1016/j.mib.2006.04.003
  • Arakawa K, Mochizuki S, Yamada K, Noma T, Kinashi H. γ-Butyrolactone autoregulator-receptor system involved in lankacidin and lankamycin production and morphological differentiation in Streptomyces rochei. Microbiology. 2007;153:1817–1827.10.1099/mic.0.2006/002170-0
  • Yamamoto S, He Y, Arakawa K, Kinashi H. γ-Butyrolactone-dependent expression of the SARP gene srrY plays a central role in the regulatory cascade leading to lankacidin and lankamycin production in Streptomyces rochei. J. Bacteriol. 2008;190:1308–1316.10.1128/JB.01383-07
  • Suzuki T, Mochizuki S, Yamamoto S, Arakawa K, Kinashi H. Regulation of lankamycin biosynthesis in Streptomyces rochei by two SARP genes, srrY and srrZ. Biosci. Biotechnol. Biochem. 2010;74:819–827.10.1271/bbb.90927
  • Kawachi R, Akashi T, Kamitani Y, Sy A, Wangchaisoonthorn U, Nihira T, Yamada Y. Identification of an AfsA homologue (BarX) from Streptomyces virginiae as a pleiotropic regulator controlling autoregulator biosynthesis, virginiamycin biosynthesis and virginiamycin M1 resistance. Mol. Microbiol. 2000;36:302–313.10.1046/j.1365-2958.2000.01819.x
  • Takano E, Kinoshita H, Mersinias V, Bucca G, Hotchkiss G, Nihira T, Smith CP, Bibb M, Wohlleben W, Chater K. A bacterial hormone (the SCB1) directly controls the expression of a pathway-specific regulatory gene in the cryptic type I polyketide biosynthetic gene cluster of Streptomyces coelicolor. Mol. Microbiol. 2005;56:465–479.10.1111/j.1365-2958.2005.04543.x
  • Corre C, Song L, O’Rourke S, Chater KF, Challis GL. 2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining. Proc. Natl. Acad. Sci. USA. 2008;105:17510–17515.10.1073/pnas.0805530105
  • Kitani S, Miyamoto KT, Takamatsu S, Herawati E, Iguchi H, Nishitomi K, Uchida M, Nagamitsu T, Omura S, Ikeda H, Nihira T. Avenolide, a Streptomyces hormone controlling antibiotic production in Streptomyces avermitilis. Proc. Natl. Acad. Sci. USA. 2011;108:16410–16415.10.1073/pnas.1113908108
  • Arakawa K, Tsuda N, Taniguchi A, Kinashi H. The butenolide signaling molecules SRB1 and SRB2 induce lankacidin and lankamycin production in Streptomyces rochei. ChemBioChem. 2012;13:1447–1457.10.1002/cbic.v13.10
  • Belousoff MJ, Shapira T, Bashan A, Zimmerman E, Rozenberg H, Arakawa K, Kinashi H, Yonath A. Crystal structure of the synergistic antibiotic pair, lankamycin and lankacidin, in complex with the large ribosomal subunit. Proc. Natl. Acad. Sci. USA. 2011;108:2717–2722.10.1073/pnas.1019406108
  • Auerbach T, Mermershtain I, Davidovich C, Bashan A, Belousoff M, Wekselman I, Zimmerman E, Xiong L, Klepacki D, Arakawa K, Kinashi H, Mankin A, Yonath A. The structure of ribosome-lankacidin complex reveals ribosomal sites for synergistic antibiotics. Proc. Natl. Acad. Sci. USA. 2010;107:1983–1988.10.1073/pnas.0914100107

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.