825
Views
2
CrossRef citations to date
0
Altmetric
Environmental Science

Analysis of the microbial community in moderately acidic drainage from the Yanahara pyrite mine in Japan

, , , &
Pages 1274-1282 | Received 03 Feb 2014, Accepted 20 Feb 2014, Published online: 17 Jun 2014

References

  • Banks D, Younger PL, Arnesen R-T, Iversen ER, Banks SB. Mine-water chemistry: the good, the bad and the ugly. Environ. Geol. 1997;32:157–174.10.1007/s002540050204
  • Grande JA, Beltrán R, Sáinz A, Santos JC, de la Torre ML, Borrego J. Acid mine drainage and acid rock drainage processes in the environment of Herrerías mine (Iberian pyrite belt, Huelve-Spain) and impact on the Andevalo dum. Environ. Geol. 2005;47:185–196.10.1007/s00254-004-1142-9
  • Baker BD, Banfield JF. Microbial communities in acid mine drainage. FEMS Microbiol. Ecol. 2003;44:139–152.10.1016/S0168-6496(03)00028-X
  • Fowler TA, Holmes PR, Crundwell FK. Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 1999;65:2987–2993.
  • Rawlings DE. Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microb. Cell Fact. 2005;4:13. Available from: http://www.microbialcellfactories.com/content/4/1/13.10.1186/1475-2859-4-13
  • Rohwerder T, Gehrke T, Kinzler K, Sand W. Bioleaching review part A: progress in bioleaching: fundamentals and mechanism of bacterial metal sulfide oxidation. Appl. Microbiol. Biotechnol. 2003;63:239–248.10.1007/s00253-003-1448-7
  • Dopson M, Baker-Austin C, Hind A, Bowman JP, Bond PJ. Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. Appl. Environ. Microbiol. 2004;70:2079–2088.10.1128/AEM.70.4.2079-2088.2004
  • Edwards KJ, Bond PL, Gihring TM, Banfield JF. An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science. 2000;287:1796–1799.10.1126/science.287.5459.1796
  • Golyshina OV, Pivovarova TA, Karavaiko GI, Kondrateva TF, Moore ER, Abraham WR, Lünsdorf H, Timmis KN, Yakimov MM, Golyshin PN. Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. Int. J. Syst. Evol. Microbiol. 2000;50:997–1006.10.1099/00207713-50-3-997
  • Volant A, Desoeuvre A, Casiot C, Lauga B, Delpoux S, Morin G, Personné JC, Héry M, Elbaz-Poulichet F, Bertin PN, Bruneel O. Archaeal diversity: temporal variation in the arsenic-rich creek sediments of Carnoulès Mine, France. Extremophiles. 2012;16:645–657.10.1007/s00792-012-0466-8
  • Goebel BM, Stackebrandt E. Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl. Environ. Microbiol. 1994;60:1614–1621.
  • Johnson DB, Rolfe S, Hallberg KB, Iversen E. Isolation and phylogenetic characterization of acidophilic microorganisms indigenous to acidic drainage waters at an abandoned Norwegian copper mine. Environ. Microbiol. 2001;3:630–637.10.1046/j.1462-2920.2001.00234.x
  • Okabayashi A, Wakai S, Kanao T, Sugio T, Kamimura K. Diversity of 16S ribosomal DNA-defined bacterial population in acid rock drainage from Japanese pyrite mine. J. Biosci. Bioeng. 2005;100:644–652.10.1263/jbb.100.644
  • Imai K. Environment cleaning by iron-oxidizing bacteria. KASEAA (in Japanese). 1977;15:299–300.
  • Kamimura K, Okabayashi A, Kikumoto M, Manchur MA, Wakai S, Kanao T. Analysis of iron- and sulfur-oxidizing bacteria in a treatment plant of acid rock drainage from a Japanese pyrite mine by use of ribulose-1, 5-bisphosphate carboxylase/oxygenase large-subunit gene. J. Biosci. Bioeng. 2010;109:244–248.10.1016/j.jbiosc.2009.08.007
  • Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequence. J. Mol. Evol. 1980;16:111–120.10.1007/BF01731581
  • Burns AS, Pugh CW, Segid YT, Behum PT, Lefticariu L, Bender KS. Performance and microbial community dynamics of a sulfate-reducing bioreactor treating coal generated acid mine drainage. Biodegradation. 2012;23:415–429.10.1007/s10532-011-9520-y
  • Fabienne BB, Yann I, Francis G, Fabian D, Catherine C, Catherine G, Catherine J. A Simple biogeochemical process removing arsenic from a mine drainage water. Geomicrobiol. J. 2006;23:201–211.
  • Biderre-Petit C, Boucher D, Kuever J, Alberic P, Jézéquel D, Chebance B, Borrel G, Fonty G, Peyret P. Identification of sulfur-cycle prokaryotes in a low-sulfate lake (Lake Pavin) using aprA and 16S rRNA gene markers. Microb. Ecol. 2011;61:313–327.10.1007/s00248-010-9769-4
  • Fujimura R, Sato Y, Nishizawa T, Nanba K, Oshima K, Hattori M, Kamijo T, Ohta H. Analysis of early bacterial communities on volcanic deposits on the island of Miyakew (Miyake-jima), Japan: a 6-year study at a fixed site. Microbes Environ. 2012;27:19–29.10.1264/jsme2.ME11207
  • Hallberg KB, Coupland K, Kimura S, Johnson DB. Macroscopic streamer growths in acidic, metal-rich mine waters in north Wales consist of novel and remarkably simple bacterial communities. Appl. Environ. Microbiol. 2006;72:2022–2030.10.1128/AEM.72.3.2022-2030.2006
  • Blöthe M, Akob DM, Kostka JE, Göschel K, Drake HL, Küsel K. pH gradient-induced heterogeneity of Fe(III)-reducing microorganisms in coal mining-associated lake sediments. Appl. Environ. Microbiol. 2008;74:1019–1029.10.1128/AEM.01194-07
  • Cummings DE, March AW, Bostick BS, Spring S, Fendorf S, Rosenzweig RF. Evidence for microbial Fe(III) reduction in anoxic, mining impacted lake sediments (Lake Coeur d’Alene, Idaho). Appl. Environ. Microbiol. 2000;66:154–162.10.1128/AEM.66.1.154-162.2000
  • Delavat F, Lett MC, Lièvremont D. Yeast and bacterial diversity along a transect in an acidic, As-Fe rich environment revealed by cultural approaches. Sci. Total Environ. 2013;463–464:823–828.10.1016/j.scitotenv.2013.06.023
  • Wu X, Wong ZL, Sten P, Engblom S, Österholm P, Dopson M. Microbial community potentially responsible for acid and metal release from an Ostrobothnian acid sulfate soil. FEMS Microbiol. Ecol. 2013;84:555–563.10.1111/femsec.2013.84.issue-3
  • Borole AP, Mielenz JR, Vishnivetskaya TA, Hamilton CY. Controlling accumulation of fermentation inhibitors in biorefinery recycle water using microbial fuel cells. Biotechnol. Biofuels. 2009;2:7. doi: 10.1186/1754-6834-2-7.10.1186/1754-6834-2-7
  • Kay CM, Rowe OF, Rocchetti L, Coupland K, Hallberg KB, Johnson DB. Evolution of Microbial ‘Streamer’ Growths in an Acidic, Metal-contaminated Stream Draining an Abandoned Underground Copper Mine. Life. 2013;3:189–211.10.3390/life3010189
  • Nakaya A, Onodera Y, Nakagawa T, Satoh K, Takahashi R, Sasaki S, Tokuyama T. Analysis of ammonia monooxygenase and archaeal 16S rRNA gene fragments in nitrifying acid-sulfate soil microcosms. Microbes Environ. 2009;24:168–174.10.1264/jsme2.ME09104
  • Zhang L, Hu H, Shen J, He J. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J. 2012;6:1032–1045.10.1038/ismej.2011.168
  • Bohorquez LC, Delgado-Serrano L, López G, Osorio-Forero C, Klepac-Ceraj V, Kolter R, Junca H, Baena S, Zambrano MM. In-depth characterization via complementing culture-independent approaches of the microbial community in an acidic hot spring of the Colombian Andes. Microb. Ecol. 2012;63:103–115.10.1007/s00248-011-9943-3
  • Suzuki T, Hashimoto H, Matsumoto N, Furutani M, Kunoh H, Takada J. Nanometer-scale visualization and structural analysis of the inorganic/organic hybrid structure of Gallionella ferruginea twisted stalks. Appl. Environ. Microbiol. 2011;77:2877–2881.10.1128/AEM.02867-10
  • Schrenk MO, Edwards KJ, Goodman RM, Hamers RJ, Banfield JF. Distribution of Thiobacillus ferrooxidans and Leptosprillum ferrooxidans: implication for generation of acid mine drainage. Science. 1998;279:1519–1522.10.1126/science.279.5356.1519
  • Tan GL, Shu WS, Zhou WH, Li XL, Lan CY, Huang LN. Seasonal and spatial variations in microbial community structure and diversity in the acid stream draining across an ongoing surface mining site. FEMS Microbiol. Ecol. 2009;70:121–129.
  • Kuang JL, Huang LN, Chen LX, Hua ZS, Li SJ, Hu M, Li JT, Shu WS. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. ISME J. 2013;7:1038–1050.10.1038/ismej.2012.139
  • Alfreider A, Vogt C, Babel W. Microbial diversity in an in situ reactor system treating monochlorobenzene contaminated groundwater as revealed by 16S ribosomal DNA analysis. Syst. Appl. Microbiol. 2002;25:232–240.10.1078/0723-2020-00111
  • Bruneel O, Duran R, Casiot C, Elbaz-Poulichet F, Personné JC. Diversity of microorganisms in Fe-As-rich acid mine drainage waters of Carnoulès, France. Appl. Environ. Microbiol. 2006;72:551–556.10.1128/AEM.72.1.551-556.2006
  • Kimura S, Bryan CG, Hallberg KB, Johnson DB. Biodiversity and geochemistry of an extremely acidic, low-temperature subterranean environment sustained by chemolithotrophy. Environ. Microbiol. 2011;13:2092–2104.10.1111/j.1462-2920.2011.02434.x
  • Heinzel E, Janneck E, Glombitza F, Schlömann M, Seifert J. Population dynamics of iron-oxidizing communities in pilot plants for the treatment of acid mine waters. Environ. Sci. Technol. 2009;43:6138–6144.10.1021/es900067d
  • Emerson D, Moyer C. Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl. Environ. Microbiol. 1997;63:4784–4792.
  • Hallberg KB. New perspectives in acid mine drainage microbiology. Hydrometallurgy. 2010;104:448–453.10.1016/j.hydromet.2009.12.013
  • Rowe OF, Johnson DB. Comparison of ferric iron generation by different species of acidophilic bacteria immobilized in packed-bed reactors. Syst. Appl. Microbiol. 2008;31:68–77.10.1016/j.syapm.2007.09.001
  • Heinzel E, Hedrich S, Janneck E, Glombitza F, Seifert J, Schlömann M. Bacterial diversity in a mine water treatment plant. Appl. Environ. Microbiol. 2009;75:858–861.10.1128/AEM.01045-08
  • Reysenbach AL, Cady SL. Microbiology of ancient and modern hydrothermal systems. Trends Microbiol. 2001;9:79–86.10.1016/S0966-842X(00)01921-1
  • Itoh T, Yoshikawa N, Takashina T. Thermogymnomonas acidicola gen. nov., sp. nov., a novel thermoacidophilic, cell wall-less archaeon in the order Thermoplasmatales, isolated from a solfataric soil in Hakone, Japan. Int. J. Syst. Evol. Microbiol. 2007;57:2557–2561.10.1099/ijs.0.65203-0
  • Edwards KJ, Bond PL, Gihring TM, Banfield JF. An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science. 2000;287:1796–1799.10.1126/science.287.5459.1796
  • Kuang JL, Huang LN, Chen LX, Hua ZS, Li SJ, Hu M, Li JT, Shu WS. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. ISME J. 2013;7:1038–1050.10.1038/ismej.2012.139
  • Tischler JS, Jwair RJ, Gelhaar NG, Drechsel A, Skirl AM, Wiacek C, Janneck E, Schlömann M. New cultivation medium for “Ferrovum” and Gallionella-related strains. J. Microbiol. Methods. 2013;95:138–144.10.1016/j.mimet.2013.07.027

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.