857
Views
11
CrossRef citations to date
0
Altmetric
Biochemistry & Molecular Biology

A genomic search approach to identify carbonyl reductases in Gluconobacter oxydans for enantioselective reduction of ketones

, , &
Pages 1350-1356 | Received 24 Dec 2013, Accepted 10 Mar 2014, Published online: 24 Jun 2014

References

  • Chen YZ, Lie F, Li Z. Enantioselective benzylic hydroxylation with Pseudomonas monteilii TA-5: a simple method for the syntheses of (R)-benzylic alcohols containing reactive functional groups. Adv. Synth. Catal. 2009;351:2107–2112.10.1002/adsc.v351:13
  • Liese A, Seelbach K, Wandry C. Industrial biotransformations. New York (NY): Wiley-VCH; 2000. p. 423.10.1002/9783527614165
  • Ye Q, Ouyang P, Ying H. A review—biosynthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate ester: recent advances and future perspectives. Appl. Microbiol. Biotechnol. 2011;89:513–522.10.1007/s00253-010-2942-3
  • Yamamoto H, Matsuyama A, Kobayashi Y. Synthesis of ethyl (R)-4-chloro-3-hydroxybutanoate with recombinant escherichia coli cells expressing (S)-specific secondary alcohol dehydrogenase. Biosci. Biotechnol. Biochem. 2002;66:481.10.1271/bbb.66.481
  • Wu XR, Wang YC, Ju JM, Chen C, Liu N, Chen YJ. Enantioselective synthesis of ethyl (S)-2-hydroxy-4-phenylbutyrate by recombinant diketoreductase. Tetrahedron: Asymmetry. 2009;20:2504–2509.10.1016/j.tetasy.2009.10.036
  • D’Arrigo P, Pedrocchi-Fantoni G, Servi S. Chemo-enzymatic synthesis of ethyl (R)-2-hydroxy-4-phenylbutyrate. Tetrahedron: Asymmetry. 2010;21:914–918.10.1016/j.tetasy.2010.05.023
  • Nakamura K, Yamanaka R, Matsuda T, Harada T. Recent developments in asymmetric reduction of ketones with biocatalysts. Tetrahedron: Asymmetry. 2003;14:2659–2681.10.1016/S0957-4166(03)00526-3
  • Zheng GW, Xu JH. New opportunities for biocatalysis: driving the synthesis of chiral chemicals. Curr. Opin. Biotechnol. 2011;22:784–792.10.1016/j.copbio.2011.07.002
  • Woodley JM. New opportunities for biocatalysis: making pharmaceutical processes greener. Trends Biotechnol. 2008;26:321–327.10.1016/j.tibtech.2008.03.004
  • Huisman GW, Liang J, Krebber A. Practical chiral alcohol manufacture using ketoreductases. Curr. Opin. Chem. Biol. 2010;14:122–129.10.1016/j.cbpa.2009.12.003
  • Forrest GL, Gonzalez B. Carbonyl reductase. Chem-Biol. Interact. 2000;129:21–40.10.1016/S0009-2797(00)00196-4
  • Ferrer M, Martínez-Abarca F, Golyshin PN. Mining genomes and ‘metagenomes’ for novel catalysts. Curr. Opin. Biotechnol. 2005;16:588–593.10.1016/j.copbio.2005.09.001
  • Yamamoto H, Matsuyama A, Kobayashi Y. Synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate using fabG-homologues. Appl. Microbiol. Biotechnol. 2003;61:133–139.10.1007/s00253-002-1188-0
  • Rabenhorst J, Gatfield I, Hilmer JM. Natural aliphatic and thiocarboxylic acids obtainable by fermentation and a microor ganism therefore. European Patent 1078990. 2000 Feb. 28.
  • Gao KL, Wei DZ. Asymmetric oxidation by Gluconobacter oxydans. Appl. Microbiol. Biotech. 2006;70:135–139.
  • Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U. Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat. Biotechnol. 2005;23:195–200.10.1038/nbt1062
  • Richter N, Neumann M, Liese A, Wohlgemuth R, Weckbecker A, Eggert T, Hummel W. Characterization of a whole-cell catalyst co-expressing glycerol dehydrogenase and glucose dehydrogenase and its application in the synthesis of L-glyceraldehyde. Biotechnol. Bioeng. 2010;106:541–552.10.1002/bit.v106:4
  • Liu X, Yuan Z. Biochemical and structural analysis of Gox2181, a new member of the SDR superfamily from Gluconobacter oxydans. Biochem. Biophys. Res. Commun. 2011;415:410–415.10.1016/j.bbrc.2011.10.083
  • Ausubel FM. Preparation and analysis of genomic DNA from bacteria. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Struhl K, editors. Current protocols in molecular biology. New York (NY): Wiley; 2002. p. 2–11.
  • Xu Z, Jing K, Liu Y, Cen P. High-level expression of recombinant glucose dehydrogenase and its application in NADPH regeneration. J. Ind. Microbiol. Biotech. 2007;34:83–90.
  • Sambrook J, Russell DW. Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2001.
  • Jung J, Park S. Synthesis of a chiral alcohol using a rationally designed Saccharomyces cerevisiae reductase and a NADH cofactor regeneration system. J. Mol. Catal. B: Enzym. 2012;84:15–21.10.1016/j.molcatb.2012.01.016
  • Nie Y, Xiao R, Xu Y, Montelione GT. Novel anti-Prelog stereospecific carbonyl reductases from Candida parapsilosis for asymmetric reduction of prochiral ketones. Org. Biomol. Chem. 2011;9:4070–4078.10.1039/c0ob00938e
  • Schweiger P, Deppenmeier U. Analysis of aldehyde reductases from Gluconobacter oxydans 621H. Appl. Microbiol. Biotechnol. 2010;85:1025–1031.10.1007/s00253-009-2154-x
  • Schweiger P, Gross H, Zeiser J, Deppenmeier U. Asymmetric reduction of diketones by two Gluconobacter oxydans oxidoreductases. Appl. Microbiol. Biotechnol. 2013;97:3475–3484.10.1007/s00253-012-4395-3
  • Chen M, Lin J, Ma Y, Wei D. Characterization of a novel NADPH-dependent oxidoreductase from Gluconobacter oxydans. Mol. Biotechnol. 2010;46:176–181.10.1007/s12033-010-9283-4
  • Schweiger P, Gross H, Deppenmeier U. Characterization of two aldo–keto reductases from Gluconobacter oxydans 621H capable of regio- and stereoselective α-ketocarbonyl reduction. Appl. Microbiol. Biotechnol. 2010;87:1415–1426.10.1007/s00253-010-2607-2
  • Blomqvist K, Nikkola M, Lehtovaara P, Suihko ML, Airaksinen U, Stråby KB, Knowles JK, Penttilä ME. Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes. J. Bacteriol. 1993;175:1392–1404.
  • Holsch K, Havel J, Haslbeck M, Weuster-Botz D. Identification, cloning, and characterization of a novel ketoreductase from the Cyanobacterium Synechococcus sp. strain PCC 7942. Appl. Environ. Microbiol. 2008;74:6697–6702.10.1128/AEM.00925-08
  • Kallberg Y, Oppermann U, Jörnvall H, Persson B. Short-chain dehydrogenases/reductases (SDRs). Eur. J. Biochem. 2002;269:4409–4417.10.1046/j.1432-1033.2002.03130.x
  • Oppermann U, Filling C, Hult M, Shafqat N, Wu X, Lindh M, Shafqat J, Nordling E, Kallberg Y, Persson B, Jörnvall H. Short-chain dehydrogenases/reductases (SDR): the 2002 update. Chem.-Biol. Interact. 2003;143–144:247–253.10.1016/S0009-2797(02)00164-3
  • Kwiecień RA, Ayadi F, Nemmaoui Y, Silvestre V, Zhang BL, Robins RJ. Probing stereoselectivity and pro-chirality of hydride transfer during short-chain alcohol dehydrogenase activity: A combined quantitative 2H NMR and computational approach. Arch. Biochem. Biophys. 2009;482:42–51.10.1016/j.abb.2008.11.019
  • Ni Y, Li CX, Wang LJ, Zhang J, Xu JH. Highly stereoselective reduction of prochiral ketones by a bacterial reductase coupled with cofactor regeneration. Org. Biomol. Chem. 2011;9:5463–5468.10.1039/c1ob05285c
  • Wang Q, Shen LH, Ye T, Cao D, Chen R, Pei X, Xie T, Li Y, Gong W, Yin X. Overexpression and characterization of a novel (S)-specific extended short-chain dehydrogenase/reductase from Candida parapsilosis. Bioresour. Technol. 2012;123:690–694.10.1016/j.biortech.2012.07.060
  • Machielsen R, Looger LL, Raedts J, Dijkhuizen S, Hummel W, Hennemann H-G, Daussmann T, van der Oost J. Cofactor engineering of Lactobacillus brevis alcohol dehydrogenase by computational design. Eng. Life Sci. 2009;9:38–44.10.1002/elsc.v9:1
  • Xiao Z, Lv C, Gao C, Qin J, Ma C, Liu Z, Liu P, Li L, Xu P. A novel whole-cell biocatalyst with NAD+ regeneration for production of chiral chemicals. PLOS one. 2010;5:e8860.10.1371/journal.pone.0008860
  • Liu X, Chen R, Yang Z, Wang J, Lin J, Wei D. Characterization of a putative stereoselective oxidoreductase from Gluconobacter oxydans and Its application in producing ethyl (R)-4-chloro-3-hydroxybutanoate ester. Mol. Biotechnol. 2014;56:285–295.10.1007/s12033-013-9707-z
  • Musa MM, Phillips RS. Recent advances in alcohol dehydrogenase-catalyzed asymmetric production of hydrophobic alcohols. Catal. Sci. Technol. 2011;1:1311–1323.10.1039/c1cy00160d

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.