1,016
Views
20
CrossRef citations to date
0
Altmetric
Biochemistry & Molecular Biology

Enhanced levels of nicotianamine promote iron accumulation and tolerance to calcareous soil in soybean

, , , , &
Pages 1677-1684 | Received 07 Mar 2014, Accepted 05 May 2014, Published online: 22 Jul 2014

References

  • Welch RM, Graham RD. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot. 2004;55:353–364.10.1093/jxb/erh064
  • Marschner H, Romheld V, Kissel M. Different strategies in higher plants in mobilization and uptake of iron. J. Plant Nutr. 1986;9:695–713.10.1080/01904168609363475
  • Eide D, Broderius M, Fett J, Guerinot ML. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc. Natl. Acad. Sci. USA. 1996;93:5624–5628.10.1073/pnas.93.11.5624
  • Robinson NJ, Procter CM, Connolly EL, Guerinot ML. A ferric-chelate reductase for iron uptake from soils. Nature. 1999;397:694–697.10.1038/17800
  • Vert G, Grotz N, Dédaldéchamp F, Gaymard F, Guerinot ML, Briat JF, Curie C. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell. 2002;14:1223–1233.10.1105/tpc.001388
  • Takagi S. Naturally occurring iron-chelating compounds in oat-and rice-root washings: I. Activity measurement and preliminary characterization. Soil Sci. Plant Nutr. 1976;45:993–1002.
  • Noma M, Noguchi M, Tamaki E. A new amino acid, nicotianamine, from tobacco leaves. Tetrahedron Lett. 1971;12:2017–2020.10.1016/S0040-4039(01)96769-3
  • Hell R, Stephan UW. Iron uptake, trafficking and homeostasis in plants. Planta. 2003;216:541–551.
  • Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK. Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell. 2003;15:1263–1280.10.1105/tpc.010256
  • Schuler M, Rellan-Alvarez R, Fink-Straube C, Abadia J, Bauer P. Nicotianamine functions in the phloem-based transport of iron to sink organs, in pollen development and pollen tube growth in Arabidopsis. Plant Cell. 2012;24:2380–2400.10.1105/tpc.112.099077
  • Benes I, Schreiber K, Ripperger H, Kircheiss A. Metal complex formation by nicotianamine, a possible phytosiderophore. Experientia. 1983;39:261–262.
  • Murakami T, Ise K, Hayakawa K, Kamei S, Takagi S. Stabilities of metal complexes of mugineic acids and their specific affinities for iron(III). Chem. Let. 1989;12:2137–2140.
  • von Wiren N, Klair S, Bansal S, Briat JF, Khodr H, Shioiri T, Leigh RA, Hider RC. Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants. Plant Physiol. 1999;119:1107–1114.10.1104/pp.119.3.1107
  • Mori S, Nishizawa NK, Hayashi H, Chino M, Yoshimura E, Ishihara J. Why are young rice plants highly susceptible to iron deficiency? Plant Soil. 1991;130:143–156.10.1007/BF00011869
  • Kawai S, Kamei S, Matsuda Y, Ando R, Kondo S, Ishizawa A, Alam S. Concentrations of iron and phytosiderophores in xylem sap of iron-deficient barley plants. Soil Sci. Plant Nutr. 2001;47:265–272.10.1080/00380768.2001.10408390
  • Suzuki M, Takahashi M, Tsukamoto T, Watanabe S, Matsuhashi S, Yazaki J, Kishimoto N, Kikuchi S, Nakanishi H, Mori S, Nishizawa NK. Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Plant J. 2006;48:85–97.10.1111/tpj.2006.48.issue-1
  • Mori S, Nishizawa N. Methionine as a dominant precursor of phytosiderophores in graminaceae plants. Plant Cell Physiol. 1987;28:1081–1092.
  • Shojima S, Nishizawa NK, Fushiya S, Nozoe S, Irifune T, Mori S. Biosynthesis of phytosiderophores. In vitro biosynthesis of 2′-deoxymugineic acid from L-methionine and nicotianamine. Plant Physiol. 1990;93:1497–1503.10.1104/pp.93.4.1497
  • Shojima S, Nishizawa NK, Mori S. Establishment of a cell-free system for the biosynthesis of nicotianamine. Plant Cell Physiol. 1989;30:673–677.
  • Higuchi K, Nishizawa NK, Yamaguchi H, Römheld V, Marschner H, Mori S. Short communication: response of nicotianamine synthase activity to Fe-deficiency in tobacco plants as compared with barley. J. Exp. Bot. 1995;46:1061–1063.10.1093/jxb/46.8.1061
  • Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S. Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol. 1999;119:471–480.10.1104/pp.119.2.471
  • Higuchi K, Watanabe S, Takahashi M, Kawasaki S, Nakanishi H, Nishizawa NK, Mori S. Nicotianamine synthase gene expression differs in barley and rice under Fe-deficient conditions. Plant J. 2001;25:159–167.10.1046/j.1365-313x.2001.00951.x
  • Suzuki K, Higuchi K, Nakanishi H, Nishizawa NK, Mori S. Cloning of nicotianamine synthase genes from Arabidopsis thaliana. Soil Sci. Plant Nutr. 1999;45:993–1002.10.1080/00380768.1999.10414350
  • Mizuno D, Higuchi K, Sakamoto T, Nakanishi H, Mori S, Nishizawa NK. Three nicotianamine synthase genes isolated from maize are differentially regulated by iron nutritional status. Plant Physiol. 2003;132:1989–1997.10.1104/pp.102.019869
  • Kinoshita E, Yamakoshi J, Kikuchi M. Purification and identification of an angiotensin I-converting enzyme inhibitor from soy sauce. Biosci. Biotechnol. Biochem. 1993;57:1107–1110.10.1271/bbb.57.1107
  • Re RN. Mechanisms of disease: local renin-angiotensin-aldosterone systems and the pathogenesis and treatment of cardiovascular disease. Nat. Clin. Pract. Cardiovasc. Med. 2004;1:42–47.
  • Chirumamilla RR, Marchant R, Nigam P. Captopril and its synthesis from chiral intermediates. J. Chem. Technol. Biotechnol. 2001;76:123–127.10.1002/(ISSN)1097-4660
  • Izawa H, Yoshida N, Shiragai N, Aoyagi Y. Nicotianamine content in various beans and its inhibition activity of angiotensin-I converting enzyme. Nippon Shokuhin Kagaku Kogaku Kaishi. 2008;55:253–257.10.3136/nskkk.55.253
  • Kataoka S. Functional effects of Japanese style fermented soy sauce (shoyu) and its components. J. Biosci. Bioeng. 2005;100:227–234.10.1263/jbb.100.227
  • Kim S, Takahashi M, Higuchi K, Tsunoda K, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK. Increased nicotianamine biosynthesis confers enhanced tolerance of high levels of metals, in particular nickel, to plants. Plant Cell Physiol. 2005;46:1809–1818.10.1093/pcp/pci196
  • Masuda H, Suzuki M, Morikawa K, Kobayashi T, Nakanishi H, Takahashi M, Saigusa M, Mori S, Nishizawa NK. Increase in iron and zinc concentrations in rice grains via the introduction of barley genes involved in phytosiderophore synthesis. Rice. 2008;1:100–108.10.1007/s12284-008-9007-6
  • Masuda H, Usuda K, Kobayashi T, Ishimaru Y, Kakei Yusuke, Takahashi M, Higuchi K, Nakanishi H, Mori S, Nishizawa NK. Overexpression of the barley nicotianamine synthase gene HvNAS1 increases iron and zinc concentrations in rice grains. Rice. 2009;2:155–166.10.1007/s12284-009-9031-1
  • Suzuki M, Morikawa KC, Nakanishi H, Takahashi M, Saigusa M, Mori S, Nishizawa NK. Transgenic rice lines that include barley genes have increased tolerance to low iron availability in a calcareous paddy soil. Soil Sci. Plant Nutr. 2008;54:77–85.10.1111/j.1747-0765.2007.00205.x
  • Usuda K, Wada Y, Ishimaru Y, Kobayashi T, Takahashi M, Nakanishi H, Nagato Y, Mori S, Nishizawa NK. Genetically engineered rice containing larger amounts of nicotianamine to enhance the antihypertensive effect. Plant Biotechnol. J. 2009;7:87–95.10.1111/pbi.2009.7.issue-1
  • Wada Y, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK. Metabolic engineering of Saccharomyces cerevisiae producing nicotianamine: potential for industrial biosynthesis of a novel antihypertensive substrate. Biosci. Biotechnol. Biochem. 2006;70:1408–1415.10.1271/bbb.50660
  • Froechlich D, Fehr W. Agronomic performance of soybeans with differing levels of iron deficiency chlorosis on calcareous soil1. Crop Sci. 1981;21:438–441.10.2135/cropsci1981.0011183X002100030021x
  • Hansen N, Schmitt M, Anderson J, Strock J. Iron deficiency of soybean in the upper Midwest and associated soil properties. Agron. J. 2003;95:1595–1601.10.2134/agronj2003.1595
  • Higuchi K, Tani M, Nakanishi H, Yoshiwara T, Goto F, Nishizawa NK, Mori S. The expression of a barley HvNAS1 nicotianamine synthase gene promoter-gus fusion gene in transgenic tobacco is induced by Fe-deficiency in roots. Biosci. Biotechnol. Biochem. 2001;65:1692–1696.10.1271/bbb.65.1692
  • Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 1994;6:271–282.10.1046/j.1365-313X.1994.6020271.x
  • Olhoft PM, Flagel LE, Donovan CM, Somers DA. Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta. 2003;216:723–735.
  • Kakei Y, Yamaguchi I, Kobayashi T, Takahashi M, Nakanishi H, Yamakawa T, Nishizawa NK. A highly sensitive, quick and simple quantification method for nicotianamine and 2-deoxymugineic acid from minimum samples using LC/ESI-TOF-MS achieves functional analysis of these components in plants. Plant Cell Physiol. 2009;50:1988–1993.10.1093/pcp/pcp141
  • Wada Y, Yamaguchi I, Takahashi M, Nakanishi H, Mori S, Nishizawa NK. Highly sensitive quantitative analysis of nicotianamine using LC/ESI-TOF-MS with an internal standard. Biosci. Biotechnol. Biochem. 2007;71:435–441.10.1271/bbb.60496
  • Nozoye T, Nagasaka S, Bashir K, Takahashi M, Kobayashi T, Nakanishi H, Nishizawa NK. Nicotianamine synthase 2 localizes to the vesicles of iron-deficient rice roots, and its mutation in the YXXφ or LL motif causes the disruption of vesicle formation or movement in rice. Plant J. 2014;77:246–260.10.1111/tpj.2013.77.issue-2
  • Nozoye T, Tsunoda K, Nagasaka S, Bashir K, Takahashi M, Kobayashi T, Nakanishi H, Nishizawa NK. Rice nicotianamine synthase localizes to particular vesicles for proper function. Plant Sig Beh. 2014;9:e28660.
  • Higuchi K, Kanazawa K, Nishizawa NK, Mori S. The role of nicotianamine synthase in response to Fe nutrition status in Gramineae. Plant Soil. 1996;178:171–177.10.1007/BF00011580
  • Nishiyama R, Kato M, Nagata S, Yanagisawa S, Yoneyama T. Identification of Zn-nicotianamine and Fe-2′-deoxymugineic acid in the phloem sap from rice plants. Plant Cell Physiol. 2012;53:381–390.10.1093/pcp/pcr188
  • Vasconcelos M, Eckert H, Arahana V, Graef G, Grusak MA, Clemente T. Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2. Planta. 2006;224:1116–1128.10.1007/s00425-006-0293-1
  • Ishimaru Y, Kim S, Tsukamoto T, Oki H, Kobayashi T, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK. Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil. Proc. Natl. Acad. Sci USA. 2007;104:7373–7378.10.1073/pnas.0610555104

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.