1,938
Views
10
CrossRef citations to date
0
Altmetric
Food & Nutrition Science

The iron content and ferritin contribution in fresh, dried, and toasted nori, Pyropia yezoensis

, &
Pages 74-81 | Received 25 Mar 2014, Accepted 30 Aug 2014, Published online: 15 Oct 2014

References

  • Welch RM, House WA, Beebe S, Cheng Z. Genetic selection for enhanced bioavailable levels of iron in bean (Phaseolus vulgaris L.) seeds. J. Agric. Food. Chem. 2000;48:3576–3580.10.1021/jf0000981
  • Hoppler M, Zeder C, Walczyk T. Quantification of ferritin-bound iron in plant samples by isotope tagging and species-specific isotope dilution mass spectrometry. Anal. Chem. 2009;81:7368–7372.10.1021/ac900885j
  • Briat J-F, Duc C, Ravet K, Gaymard F. Ferritins and iron storage in plants. Biochim. Biophys. Acta. 2010;1800:806–814.10.1016/j.bbagen.2009.12.003
  • Lukac RJ, Aluru MR, Reddy MB. Quantification of ferritin from staple food crops. J. Agric. Food Chem. 2009;57:2155–2161.10.1021/jf803381d
  • Laulhere JP, Lescure AM, Briat JF. Purification and characterization of ferritins from maize, pea, and soya bean seeds. Distribution in various pea organs. J. Biol. Chem. 1988;263:10289–10294.
  • Arosio P, Ingrassia R, Cavadini P. Ferritins: A family of molecules for iron storage, antioxidation and more. Biochim. Biophys. Acta. 2009;1790:589–599.10.1016/j.bbagen.2008.09.004
  • Zhao G. Phytoferritin and its implications for human health and nutrition. Biochim. Biophys. Acta. 2010;1800:815–823.10.1016/j.bbagen.2010.01.009
  • Beard JL, Burton JW, Theil EC. Purified ferritin and soybean meal can be sources of iron for treating iron deficiency in rats. J. Nutr. 1996;126:154–160.
  • Lonnerdal B. The importance and bioavailability of phytoferritin-bound iron in cereals and legume foods. Int. J. Vitam. Nutr. Res. 2007;77:152–157.10.1024/0300-9831.77.3.152
  • Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F. Iron fortification of rice seed by the soybean ferritin gene. Nat. Biotechnol. 1999;17:282–286.
  • Drakakaki G, Christou P, Stoger E. Constitutive expression of soybean ferritin cDNA in transgenic wheat and rice results in increased iron levels in vegetative tissues but not in seeds. Transgenic Res. 2000;9:445–452.10.1023/A:1026534009483
  • Drakakaki G, Marcel S, Glahn RP, Lund EK, Pariagh S, Fischer R, Christou P, Stoger E. Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus Phytase in maize results in significant increases in the levels of bioavailable iron. Plant Mol. Biol. 2005;59:869–880.10.1007/s11103-005-1537-3
  • Masuda H, Kobayashi T, Ishimaru Y, Takahashi M, Aung MS, Nakanishi H, Mori S, Nishizawa NK. Iron-biofortification in rice by the introduction of three barley genes participated in mugineic acid biosynthesis with soybean ferritin gene. Front. Plant Sci. 2013;4:132:1–12.
  • Shaw NS, Liu YH. Bioavailability of iron from purple laver (Porphyra spp.) estimated in a rat hemoglobin regeneration bioassay. J. Agric. Food. Chem. 2000;48:1734–1737.10.1021/jf990759y
  • Garcia-Casal MN, Pereira AC, Leets I, Ramirez J, Quiroga MF. High iron content and bioavailability in humans from four species of marine algae. J. Nutr. 2007;137:2691–2695.
  • Garcia-Casal MN, Ramirez J, Leets I, Pereira AC, Quiroga MF. Antioxidant capacity, polyphenol content and iron bioavailability from algae (Ulva sp., Sargassum sp. and Porphyra sp.) in human subjects. Br. J. Nutr. 2009;101:79–85.10.1017/S0007114508994757
  • Yoshie Y, Suzuki T, Shirai T, Hirano T. Dietary fiber and minerals in dried nori of various culture locations and prices. Nippon Suisan Gakkaishi. 1993;59:1763–1767.10.2331/suisan.59.1763
  • Yoshie Y, Suzuki T, Shirai T, Hirano T. Changes in the contents of dietary fibers, minerals, free amino acids, and fatty acids during processing of dried nori. Nippon Suisan Gakkaishi. 1994;60:117–123.10.2331/suisan.60.117
  • Keren N, Aurora R, Pakrasi HB. Critical roles of bacterioferritins in iron storage and proliferation of cyanobacteria. Plant Physiol. 2004;135:1666–1673.10.1104/pp.104.042770
  • Marchetti A, Parker MS, Moccia LP, Lin EO, Arrieta AL, Ribalet F, Murphy MEP, Maldonado MT, Armbrust EV. Ferritin is used for iron storage in bloom-forming marine pennate diatoms. Nature. 2009;457:467–470.10.1038/nature07539
  • Long JC, Sommer F, Allen MD, Lu S-F, Merchant SS. FER1 and FER2 encoding two ferritin complexes in Chlamydomonas reinhardtii chloroplasts are regulated by iron. Genetics. 2008;179:137–147.10.1534/genetics.107.083824
  • Nagasaka S, Nishizawa NK, Negishi T, Satake K, Mori S, Yoshimura E. Novel iron-storage particles may play a role in aluminum tolerance of Cyanidimin caldarium. Planta. 2002;215:399–404.10.1007/s00425-002-0764-y
  • Boettger LH, Miller EP, Andresen C, Matzanke BF, Kuepper FC, Carrano CJ. Atypical iron storage in marine brown algae: a multidisciplinary study of iron transport and storage in Ectocarpus siliculosus. J. Exp. Bot. 2012;63:5763–5772.10.1093/jxb/ers225
  • Morimoto S, Masuda T, Sugihara I, Toyohara H. Identification and characterization of a ferritin gene and its product from the Multicellular green alga Ulva pertusa. Biosci. Biotechnol. Biochem. 2012;76:1913–1919.10.1271/bbb.120400
  • Rad AM, Janic B, Iskander AS, Soltanian-Zadeh, Arbab AS. Measurement of quantity of iron in magnetically labeled cells: comparison among different UV/VIS spectrometric methods. BioTechniques. 2007;43:627–628, 630, 632 passim.10.2144/000112599
  • Masuda T, Morimoto SI, Mikami B, Toyohara H. The extension peptide of plant ferritin from sea lettuce contributes to shell stability and surface hydrophobicity. Protein Sci. 2012;21:786–796.
  • Stefanini S, Cavallo S, Wang CQ, Tataseo P, Vecchini P, Giartosio A, Chiancone E. Thermal stability of horse spleen apoferritin and human recombinant H apoferritin. Arch. Biochem. Biophys. 1996;325:58–64.10.1006/abbi.1996.0007
  • Masuda T, Goto F, Yoshihara T, Mikami B. Crystal structure of plant ferritin reveals a novel metal binding site that functions as a transit site for metal transfer in ferritin. J. Biol. Chem. 2010;285:4049–4059.10.1074/jbc.M109.059790
  • Matsuzaki M, Misumi O, Shin IT, Maruyama S, Takahara M, Miyagishima SY, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y, Kuroiwa T. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature. 2004;428:653–657.10.1038/nature02398
  • Crichton RR, Declercq JP. X-ray structures of ferritins and related proteins. Biochim. Biophys. Acta. 2010;1800:706–718.10.1016/j.bbagen.2010.03.019
  • Lawson DM, Treffry A, Artymiuk PJ, Harrison PM, Yewdall SJ, Luzzago A, Cesareni G, Levi S, Arosio P. Identification of the ferroxidase centre in ferritin. FEBS Lett. 1989;254:207–210.10.1016/0014-5793(89)81040-3
  • Lawson DM, Artymiuk PJ, Yewdall SJ, Smith JM, Livingstone JC, Treffry A, Luzzago A, Levi S, Arosio P, Cesareni G, Thomas CD, Shaw WV, Harrison PM. Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature. 1991;349:541–544.10.1038/349541a0
  • Bruce BD. Chloroplast transit peptides: structure, function and evolution. Trends Cell Biol. 2000;10:440–447.10.1016/S0962-8924(00)01833-X
  • Bruce BD. The paradox of plastid transit peptides: conservation of function despite divergence in primary structure. Biochim. Biophys. Acta. 2001;1541:2–21.10.1016/S0167-4889(01)00149-5
  • Laulhere JP, Laboure AM, Briat JF. Mechanism of the transition from plant ferritin to phytosiderin. J. Biol. Chem. 1989;264:3629–3635.
  • Lescure AM, Proudhon D, Pesey H, Ragland M, Theil EC, Briat JF. Ferritin gene transcription is regulated by iron in soybean cell cultures. Proc. Natl. Acad. Sci. U S A. 1991;88:8222–8226.10.1073/pnas.88.18.8222
  • Briat JF, Ravet K, Arnaud N, Duc C, Boucherez J, Touraine B, Cellier F, Gaymard F. New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Ann. Bot. 2010;105:811–822.10.1093/aob/mcp128
  • Laulhère JP, Labouré AM, Van Wuytswinkel O, Gagnon J, Briat JF. Purification, characterization and function of bacterioferritin from the cyanobacterium Synechocystis P.C.C. 6803. Biochem. J. 1992;281:785–793.
  • Kranzler C, Lis H, Shaked Y, Keren N. The role of reduction in iron uptake processes in a unicellular, planktonic cyanobacterium. Environ. Microbiol. 2011;13:2990–2999.10.1111/j.1462-2920.2011.02572.x
  • Shcolnick S, Summerfield TC, Reytman L, Sherman LA, Keren N. The mechanism of iron homeostasis in the unicellular cyanobacterium Synechocystis sp. PCC 6803 and its relationship to oxidative stress. Plant Physiol. 2009;150:2045–2056.10.1104/pp.109.141853
  • Wu TM, Hsu YT, Sung MS, Hsu YT, Lee TM. Expression of genes involved in redox homeostasis and antioxidant defense in a marine macroalga Ulva fasciata by excess copper. Aquat. Toxicol. 2009;94:275–285.10.1016/j.aquatox.2009.07.010
  • Nakamura Y, Sasaki N, Kobayashi M, Ojima N, Yasuike M, Shigenobu Y, Satomi M, Fukuma Y, Shiwaku K, Tsujimoto A, Kobayashi T, Nakayama I, Ito F, Nakajima K, Sano M, Wada T, Kuhara S, Inouye K, Gojobori T, Ikeo K. The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis). Plos One. 2013;8; e57122:1–11.
  • Kong F, Sun P, Cao M, Wang L, Mao Y. Complete mitochondrial genome of Pyropia yezoensis: reasserting the revision of genus Porphyra. Mitochondrial DNA. 2013.
  • Wang L, Mao Y, Kong F, Li G, Ma F, Zhang B, Sun P, Bi G, Zhang F, Xue H, Cao M. Complete sequence and analysis of plastid genomes of two economically important red algae: Pyropia haitanensis and Pyropia yezoensis. PLoS ONE. 2013;8:e65902.10.1371/journal.pone.0065902

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.